Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 31(7): 956-966, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34099600

RESUMEN

To prevent the outbreak of infectious diseases that inflict huge economic and social losses, domestic livestock farms and related facilities have introduced automatic and semiautomatic disinfectant solution-spraying systems for vehicles. However, the facility standards and specifications vary by manufacturer, and no scientific performance evaluation has been conducted. The puropose of this study is to develop physical and biological evaluation methods. Physical and biological appraisals were conducted using two types of disinfection facilities (tunnel- and U-type) and two types of vehicles (passenger car, truck). Water-sensitive paper was used to evaluate the physical performance values for the disinfection facilities. In addition, to assess their biological performance, carriers containing low-pathogenic avian influenza virus were attached to vehicles, and the viral reduction was measured after the vehicles moved through the facility. The tunnel-type had rates of coverage in the range of 70-90% for the passenger car and 60-90% for the truck. At least 4-log virus reduction after spraying for 1-5 min was shown for both vehicles. For the U-type facility evaluation, the coverage rates were in the range of 60-90% for the passenger car and at least 90% for the truck. More than 4-log viral reduction was estimated within a spraying time of 5 min. To reduce viruses on the surface of vehicles by at least 4 log within a short period, the disinfectant solution should cover at least 71% of the pathogens. In conclusion, we were able to assess the physical and biological performance criteria for disinfection facilities aboard transportation vehicles.


Asunto(s)
Desinfección/métodos , Virus de la Influenza A/efectos de los fármacos , Vehículos a Motor , Animales , Pollos , Desinfectantes/administración & dosificación , Desinfectantes/farmacología , Estudios de Evaluación como Asunto , Vehículos a Motor/clasificación
2.
J Vet Sci ; 21(3): e34, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32476310

RESUMEN

BACKGROUND: A nationwide outbreak of foot-and-mouth disease (FMD) in South Korea caused massive economic losses in 2010. Since then, the Animal and Plant Quarantine Agency (QIA) has enhanced disinfection systems regarding livestock to prevent horizontal transmission of FMD and Avian influenza (AI). Although the amount of disinfectant used continues to increase, cases of FMD and AI have been occurring annually in Korea, except 2012 and 2013. OBJECTIVES: This study measured the concentration of the disinfectant to determine why it failed to remove the horizontal transmission despite increased disinfectant use. METHODS: Surveys were conducted from February to May 2017, collecting 348 samples from disinfection systems. The samples were analyzed using the Standards of Animal Health Products analysis methods from QIA. RESULTS: Twenty-three facilities used inappropriate or non-approved disinfectants. Nearly all sampled livestock farms and facilities-93.9%-did not properly adjust the disinfectant concentration. The percentage using low concentrations, or where no effective substance was detected, was 46.9%. Furthermore, 13 samples from the official disinfection station did not use effective disinfectant, and-among 72 samples from the disinfection station-88.89% were considered inappropriate concentration, according to the foot-and-mouth disease virus guidelines; considering the AIV guideline, 73.61% were inappropriate concentrations. Inappropriate concentration samples on automatic (90.00%) and semi-automatic (90.90%) disinfection systems showed no significant difference from manual methods (88.24%). Despite this study being conducted during the crisis level, most disinfectants were used inappropriately. CONCLUSIONS: This may partially explain why horizontal transmission of FMD and AI cannot be effectively prevented despite extensive disinfectant use.


Asunto(s)
Enfermedades de los Bovinos , Brotes de Enfermedades/veterinaria , Desinfectantes/farmacología , Fiebre Aftosa , Gripe Aviar , Enfermedades de las Aves de Corral , Enfermedades de los Porcinos , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Pollos , Brotes de Enfermedades/prevención & control , Patos , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Gripe Aviar/virología , Ganado , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , República de Corea/epidemiología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología
3.
Korean J Food Sci Anim Resour ; 38(3): 487-497, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30018493

RESUMEN

Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide (ClO2) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and ClO2 gas disinfection. Application of 40 ppm ClO2 gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm ClO2 had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm ClO2 gas treatment, though the value was decreased at high concentration of 160 ppm ClO2 gas. From these results, we recommend that ClO2 gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...