Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(22): 10734-45, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26384427

RESUMEN

The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified.


Asunto(s)
Proteínas Bacterianas/química , Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Transposasas/metabolismo , Alanina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Mutación , Pliegue de Proteína , Estructura Terciaria de Proteína
2.
J Vis Exp ; (69): e4266, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23149570

RESUMEN

Escherichia coli SeqA is a negative regulator of DNA replication that prevents premature reinitiation events by sequestering hemimethylated GATC clusters within the origin of replication. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. SeqA associates only weakly with single GATC sequences, but it forms high affinity complexes with DNA duplexes containing multiple GATC sites. The minimal functional and structural unit of SeqA is a dimer, thereby explaining the requirement of at least two GATC sequences to form a high-affinity complex with hemimethylated DNA. Additionally, the SeqA architecture, with the oligomerization and DNA-binding domains separated by a flexible linker, allows binding to GATC repeats separated by up to three helical turns. Therefore, understanding the function of SeqA at a molecular level requires the structural analysis of SeqA bound to multiple GATC sequences. In protein-DNA crystallization, DNA can have none to an exceptional effect on the packing interactions depending on the relative sizes and architecture of the protein and the DNA. If the protein is larger than the DNA or footprints most of the DNA, the crystal packing is primarily mediated by protein-protein interactions. Conversely, when the protein is the same size or smaller than the DNA or it only covers a fraction of the DNA, DNA-DNA and DNA-protein interactions dominate crystal packing. Therefore, crystallization of protein-DNA complexes requires the systematic screening of DNA length and DNA ends (blunt or overhang). In this report, we describe how to design, optimize, purify and crystallize hemimethylated DNA duplexes containing tandem GATC repeats in complex with a dimeric variant of SeqA (SeqAΔ(41-59)-A25R) to obtain crystals suitable for structure determination.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Escherichia coli/química , Cristalización , Dimerización , Escherichia coli/química , Conformación de Ácido Nucleico
3.
Chem Biol ; 17(9): 959-69, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20851345

RESUMEN

In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the hydrophobic groove that serves as the primary docking site for ClpP ATPases. Binding of ADEP1 locks the N-terminal loops of ClpP in a ß-hairpin conformation, generating a stable pore through which extended polypeptides can be threaded. This structure serves as a model for ClpP in the holoenzyme ClpAP and ClpXP complexes and provides critical information to further develop this class of antibiotics.


Asunto(s)
Antibacterianos/química , Depsipéptidos/química , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Modelos Moleculares , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
4.
Mol Cell ; 39(1): 145-51, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603082

RESUMEN

DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.


Asunto(s)
Adenosina Trifosfatasas/química , Bacillus subtilis/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Reparación de la Incompatibilidad de ADN , Endonucleasas/química , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Zinc/metabolismo
5.
Nucleic Acids Res ; 37(10): 3143-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19304745

RESUMEN

SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqADelta(41-59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA-DNA complex also unveils additional protein-protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Origen de Réplica , Secuencias Repetidas en Tándem , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
6.
Artículo en Inglés | MEDLINE | ID: mdl-18540078

RESUMEN

Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to multiple hemimethylated GATC sequences. In an effort to understand how SeqA forms a high-affinity complex with hemimethylated DNA, a dimeric variant of SeqA was overproduced, purified and crystallized bound to a DNA duplex containing two hemimethylated GATC sites. The preliminary X-ray analysis of crystals diffracting to 3 A resolution is presented here.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleótidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cristalización , Metilación de ADN , ADN Bacteriano , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Enlace de Hidrógeno , Isopropil Tiogalactósido/farmacología , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Nucleótidos/química , Plásmidos , Unión Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Difracción de Rayos X
7.
J Bacteriol ; 188(12): 4183-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740924

RESUMEN

An extensive study of teichoic acid biosynthesis in the model organism Bacillus subtilis has established teichoic acid polymers as essential components of the gram-positive cell wall. However, similar studies pertaining to therapeutically relevant organisms, such as Staphylococcus aureus, are scarce. In this study we have carried out a meticulous examination of the dispensability of teichoic acid biosynthetic enzymes in S. aureus. By use of an allelic replacement methodology, we examined all facets of teichoic acid assembly, including intracellular polymer production and export. Using this approach we confirmed that the first-acting enzyme (TarO) was dispensable for growth, in contrast to dispensability studies in B. subtilis. Upon further characterization, we demonstrated that later-acting gene products (TarB, TarD, TarF, TarIJ, and TarH) responsible for polymer formation and export were essential for viability. We resolved this paradox by demonstrating that all of the apparently indispensable genes became dispensable in a tarO null genetic background. This work suggests a lethal gain-of-function mechanism where lesions beyond the initial step in wall teichoic acid biosynthesis render S. aureus nonviable. This discovery poses questions regarding the conventional understanding of essential gene sets, garnered through single-gene knockout experiments in bacteria and higher organisms, and points to a novel drug development strategy targeting late steps in teichoic acid synthesis for the infectious pathogen S. aureus.


Asunto(s)
Proteínas Bacterianas/genética , Genes Bacterianos/fisiología , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biosíntesis , Proteínas Bacterianas/metabolismo , Plásmidos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Ácidos Teicoicos/química , Ácidos Teicoicos/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...