Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomed Mater ; 19(6)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39173660

RESUMEN

Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide anex vivomodel of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Proliferación Celular , Durapatita , Nanotubos , Osteoblastos , Osteoclastos , Impresión Tridimensional , Estroncio , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Estroncio/química , Osteoblastos/citología , Osteoclastos/citología , Osteoclastos/metabolismo , Durapatita/química , Nanotubos/química , Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Vidrio/química , Huesos/metabolismo , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Colágeno/química , Técnicas de Cocultivo , Células Cultivadas , Fosfatasa Alcalina/metabolismo , Iridoides
2.
Biofactors ; 48(5): 1089-1110, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35661288

RESUMEN

Bone homeostasis is the equilibrium between organic and inorganic components of the extracellular matrix (ECM) and cells. Alteration of this balance has consequences on bone mass and architecture, resulting in conditions such as osteoporosis (OP). Given ECM protein mutual regulation and their effects on bone structure and mineralization, further insight into their expression is crucial to understanding bone biology under normal and pathological conditions. This study focused on Type I Collagen, which is mainly responsible for structural properties and mineralization of bone, and selected proteins implicated in matrix composition, mineral deposition, and cell-matrix interaction such as Decorin, Osteocalcin, Osteopontin, Bone Sialoprotein 2, Osteonectin and Transforming Growth Factor beta. We developed a novel multidisciplinary approach in order to assess bone matrix in healthy and OP conditions more comprehensively by exploiting the Fourier Transform Infrared Imaging (FTIRI) technique combined with histomorphometry, Sirius Red staining, immunohistochemistry, and Western Blotting. This innovatory procedure allowed for the analysis of superimposed tissue sections and revealed that the alterations in OP bone tissue architecture were associated with warped Type I Collagen structure and deposition but not with changes in the total protein amount. The detected changes in the expression and/or cooperative or antagonist role of Decorin, Osteocalcin, Osteopontin, and Bone Sialoprotein-2 indicate the deep impact of these NCPs on collagen features of OP bone. Overall, our strategy may represent a starting point for designing targeted clinical strategies aimed at bone mass preservation and sustain the FTIRI translational capability as upcoming support for traditional diagnostic methods.


Asunto(s)
Osteopontina , Osteoporosis , Colágeno , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Cabeza Femoral/química , Cabeza Femoral/metabolismo , Cabeza Femoral/patología , Análisis de Fourier , Humanos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Osteocalcina/análisis , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina , Osteopontina/genética , Osteopontina/metabolismo , Osteoporosis/diagnóstico por imagen , Osteoporosis/patología , Factor de Crecimiento Transformador beta/metabolismo
3.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268956

RESUMEN

Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials' functionalization with Sr as an osteopromoting dopant in BTE.

4.
Methods Protoc ; 5(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35076543

RESUMEN

New biomaterials and scaffolds for bone tissue engineering (BTE) applications require to be tested in a bone microenvironment reliable model. On this assumption, the in vitro laboratory protocols with bone cells represent worthy experimental systems improving our knowledge about bone homeostasis, reducing the costs of experimentation. To this day, several models of the bone microenvironment are reported in the literature, but few delineate a protocol for testing new biomaterials using bone cells. Herein we propose a clear protocol to set up an indirect co-culture system of human-derived osteoblasts and osteoclast precursors, providing well-defined criteria such as the cell seeding density, cell:cell ratio, the culture medium, and the proofs of differentiation. The material to be tested may be easily introduced in the system and the cell response analyzed. The physical separation of osteoblasts and osteoclasts allows distinguishing the effects of the material onto the two cell types and to evaluate the correlation between material and cell behavior, cell morphology, and adhesion. The whole protocol requires about 4 to 6 weeks with an intermediate level of expertise. The system is an in vitro model of the bone remodeling system useful in testing innovative materials for bone regeneration, and potentially exploitable in different application fields. The use of human primary cells represents a close replica of the bone cell cooperation in vivo and may be employed as a feasible system to test materials and scaffolds for bone substitution and regeneration.

5.
J Clin Med ; 10(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535589

RESUMEN

Background: Osteonecrosis (ON) of the femoral head represents a potentially severe disease of the hip where the lack of bone regeneration may lead to femoral head collapse and secondary osteoarthritis, with serious pain and disability. The aim of this European, multicentric clinical trial was to prove safety and early efficacy to heal early femoral head ON in patients through minimally invasive surgical implantation of autologous mesenchymal stromal cells (MSC) expanded from bone marrow (BM) under good manufacturing practices (GMP). Methods: Twenty-two patients with femoral head ON (up to ARCO 2C) were recruited and surgically treated in France, Germany, Italy and Spain with BM-derived, expanded autologous MSC (total dose 140 million MSC in 7 mL). The investigational advanced therapy medicinal product (ATMP) was expanded from BM under the same protocol in all four countries and approved by each National Competent Authority. Patients were followed during two years for safety, based on adverse events, and for efficacy, based on clinical assessment (pain and hip score) and imaging (X-rays and MRIs). Patients were also reviewed after 5 to 6 years at latest follow-up for final outcome. Results: No severe adverse event was recalled as related to the ATMP. At 12 months, 16/20 per protocol and 16/22 under intention-to-treat (2 drop-out at 3 and 5 months) maintained head sphericity and showed bone regeneration. Of the 4 hips with ON progression, 3 required total hip replacement (THR). At 5 years, one patient (healed at 2 years visit) was not located, and 16/21 showed no progression or THR, 4/21 had received THR (all in the first year) and 1 had progressed one stage without THR. Conclusions: Expanded MSCs implantation was safe. Early efficacy was confirmed in 80% of cases under protocol at 2 years. At 5 years, the overall results were maintained and 19% converted to THR, all in the first year.

6.
Cells ; 11(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011588

RESUMEN

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and other factors, is considered a potential alternative to conventional treatments. Innovative scaffolds need to be tested in in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs), the two main players of bone remodeling, is required to mimic their crosstalk and molecular cooperation. To this aim, two composite materials were developed, based on type I collagen, and containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. The developed nanostructured systems underwent genipin chemical crosslinking and were then tested with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors, for 2-3 weeks. The favorable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of cells, encouraging a further investigation of the developed bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE.


Asunto(s)
Biomimética , Huesos/citología , Colágeno/farmacología , Nanoestructuras/química , Fosfatasa Alcalina/metabolismo , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Elasticidad , Humanos , Hidrólisis , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Fosfatasa Ácida Tartratorresistente/metabolismo , Viscosidad
7.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867075

RESUMEN

Bone-tissue regeneration induced by biomimetic bioactive materials is the most promising approach alternative to the clinical ones used to treat bone loss caused by trauma or diseases such as osteoporosis. The goal is to design nanostructured bioactive constructs able to reproduce the physiological environment: By mimicking the natural features of bone tissue, the cell behavior during the regeneration process may be addressed. At present, 3D-printing technologies are the only techniques able to design complex structures avoiding constraints of final shape and porosity. However, this type of biofabrication requires complex optimization of biomaterial formulations in terms of specific rheological and mechanical properties while preserving high biocompatibility. In this work, we combined nano-sized mesoporous bioactive glasses enriched with strontium ions with type I collagen, to formulate a bioactive ink for 3D-printing technologies. Moreover, to avoid the premature release of strontium ions within the crosslinking medium and to significantly increase the material mechanical and thermal stability, we applied an optimized chemical treatment using ethanol-dissolved genipin solutions. The high biocompatibility of the hybrid system was confirmed by using MG-63 and Saos-2 osteoblast-like cell lines, further highlighting the great potential of the innovative nanocomposite for the design of bone-like scaffolds.

8.
Bone ; 137: 115363, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32298836

RESUMEN

The punctual analysis of bone Extracellular Matrix (ECM) proteins represents a pivotal point for medical research in bone diseases like osteoporosis. Studies in this field, historically done to appreciate bone biology, were mainly conducted on animal samples and, up to today, only a few studies on protein detection in human bone are present. The challenges in bone ECM protein extraction and quantitation protocols are related to both the separation of proteins from the mineral content (i.e. hydroxyapatite) and the difficulty of avoiding protein denaturation during the extraction processes. The aim of the present work was to define appropriate protocol(s) for bone ECM protein extraction that could be applied to investigate both normal and pathological conditions. We compared and optimised some of the most used protocols present in the literature, modifying the protein precipitation method, the buffer used for resuspension and/or the volume of reagent used. Bradford and BCA assays and Western Blotting were used to evaluate the variations in the total protein recovery and the amount of selected proteins (Type I Collagen, TGF-ß, IGF-1, Decorin, Osteopontin, Bone Sialoprotein-2 and Osteocalcin). Collectively, we were capable to draw-up two single-extract protocols with optimal recovery and ideal protein content, that can be used for a detailed analysis of ECM proteins in pathological bone samples. Time-consuming multi-extract procedures, optimised in their precipitation methods, are however crucial for a precise detection of specific proteins, like osteocalcin. As the matter of fact, also the demineralization processes, commonly suggested and performed in several protocols, could hinder an accurate protein detection, thus inherently affecting the study of a pathological bone ECM. This study represents a starting point for the definition of appropriate strategies in the study of bone extracellular matrix proteins involved in the onset and maintenance of bone diseases, as well as a tool for the development of customized scaffolds capable to modulate a proper feedback loop in bone remodelling, altered in case of diseases like osteoporosis.


Asunto(s)
Proteínas de la Matriz Extracelular , Osteoporosis , Animales , Huesos/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Osteocalcina
9.
Acta Biomater ; 108: 22-45, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251782

RESUMEN

Bone is an extremely dynamic tissue, undergoing continuous remodeling for its whole lifetime, but its regeneration or augmentation due to bone loss or defects are not always easy to obtain. Bone tissue engineering (BTE) is a promising approach, and its success often relies on a "smart" scaffold, as a support to host and guide bone formation through bone cell precursors. Bone homeostasis is maintained by osteoblasts (OBs) and osteoclasts (OCs) within the basic multicellular unit, in a consecutive cycle of resorption and formation. Therefore, a functional scaffold should allow the best possible OB/OC cooperation for bone remodeling, as happens within the bone extracellular matrix in the body. In the present work OB/OC co-culture models, with and without scaffolds, are reviewed. These experimental systems are intended for different targets, including bone remodeling simulation, drug testing and the assessment of biomaterials and 3D scaffolds for BTE. As a consequence, several parameters, such as cell type, cell ratio, culture medium and inducers, culture times and setpoints, assay methods, etc. vary greatly. This review identifies and systematically reports the in vitro methods explored up to now, which, as they allow cellular communication, more closely resemble bone remodeling and/or the regeneration process in the framework of BTE. STATEMENT OF SIGNIFICANCE: Bone is a dynamic tissue under continuous remodeling, but spontaneous healing may fail in the case of excessive bone loss which often requires valid alternatives to conventional treatments to restore bone integrity, like bone tissue engineering (BTE). Pre-clinical evaluation of scaffolds for BTE requires in vitro testing where co-cultures combining innovative materials with osteoblasts (OBs) and osteoclasts (OCs) closely mimic the in vivo repair process. This review considers the direct and indirect OB/OC co-cultures relevant to BTE, from the early mouse-cell models to the recent bone regenerative systems. The co-culture modeling of bone microenvironment provides reliable information on bone cell cross-talk. Starting from improved knowledge on bone remodeling, bone disease mechanisms may be understood and new BTE solutions are designed.


Asunto(s)
Osteoblastos , Osteoclastos , Animales , Remodelación Ósea , Huesos , Diferenciación Celular , Técnicas de Cocultivo , Ratones
10.
Injury ; 51 Suppl 1: S63-S73, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32139130

RESUMEN

BACKGROUND AND STUDY AIM: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture. PATIENTS AND METHODS: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation. Mean age was 39 ± 13 years, 57% were males, and mean Body Mass Index 27 ± 7. Thirteen (46%) were active smokers. There were 11 femoral, 4 humeral, and 13 tibial non-unions. Initial fracture occurred at a mean ± SD of 27.9 ± 31.2 months before recruitment. Efficacy results were expressed by clinical consolidation (no or mild pain if values under 30 in VAS scale), and by radiological consolidation with a REBORNE score over 11/16 points (value of or above 0.6875). Means were statistically compared and mixed models for repeated measurements estimated the mean and confidence intervals (95%) of the REBORNE Bone Healing scale. Clinical and radiological consolidation were analyzed in the subgroups with Spearman correlation tests (adjusted by Bonferroni). RESULTS: Clinical consolidation was earlier confirmed, while radiological consolidation at 3 months was 25.0% (7/28 cases), at 6 months 67.8% (19/28 cases), and at 12 months, 92.8% (26/28 cases including the drop-out extrapolation of two failures). Bone biopsies confirmed bone formation surrounding the bioceramic granules. All locations showed similar consolidation, although this was delayed in tibial non-unions. No significant gender difference was found in 12-month consolidation (95% confidence). Higher consolidation scale values were seen in non-smoking patients at 6 (p = 0.012, t-test) and 12 months (p = 0.011, t-test). Longer time elapsed after the initial fracture did not preclude the occurrence of consolidation. CONCLUSION: Bone consolidation was efficaciously obtained with the studied expanded hBM-MSCs combined to biomaterials, by clinical and radiological evaluation, and confirmed by bone biopsies, with lower consolidation scores in smokers.


Asunto(s)
Materiales Biocompatibles/farmacología , Curación de Fractura/fisiología , Fracturas Óseas/terapia , Fracturas no Consolidadas/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Adulto , Europa (Continente) , Femenino , Fémur/patología , Humanos , Húmero/patología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Osteogénesis , Radiografía , Tibia/patología , Trasplante Autólogo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA