Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39338374

RESUMEN

Apitoxin therapy (BVT-bee venom therapy) is an emerging complementary treatment utilizing bee venom for various medical conditions. This review explores the potential and therapeutic mechanisms of bee venom, focusing on its chemical composition and the methods for its extraction and purification to enhance safety while maintaining bioactivity. Bee venom contains amphipathic peptides such as melittin and apamin, enzymes like phospholipase A2, and bioamines including histamine and catecholamines, contributing to its pleiotropic effects. The therapeutic applications of bee venom span anti-inflammatory, analgesic, antimicrobial, antiviral, neuroprotective, anti-arthritic, and anti-cancer activities. Clinical and laboratory studies have demonstrated its efficacy in treating chronic and autoimmune diseases, pain management, and improving quality of life. The immunogenic properties of bee venom necessitate ongoing research to mitigate allergic reactions, ensuring its safe and effective use in medical practice. This review summarizes the current state of research on bee venom therapy, highlighting its potential benefits and future research directions.

2.
Toxins (Basel) ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38922144

RESUMEN

Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic processes, mycotoxins exhibit significant toxicity, posing risks of acute or chronic health complications. Recognized as highly hazardous food contaminants, mycotoxins present a pervasive threat throughout the agricultural and food processing continuum, from plant cultivation to post-harvest stages. The imperative to adhere to principles of good agricultural and industrial practice is underscored to mitigate the risk of mycotoxin contamination in food production. In the domain of food safety, the rapid and efficient detection of mycotoxins holds paramount significance. This paper delineates conventional and commercial methodologies for mycotoxin detection in ensuring food safety, encompassing techniques like liquid chromatography, immunoassays, and test strips, with a significant emphasis on the role of electrochemiluminescence (ECL) biosensors, which are known for their high sensitivity and specificity. These are categorized into antibody-, and aptamer-based, as well as molecular imprinting methods. This paper examines the latest advancements in biosensors for mycotoxin testing, with a particular focus on their amplification strategies and operating mechanisms.


Asunto(s)
Técnicas Biosensibles , Contaminación de Alimentos , Inocuidad de los Alimentos , Micotoxinas , Micotoxinas/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Humanos , Animales
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891934

RESUMEN

Despite the significant changes that unfold during the subacute phase of stroke, few studies have examined recovery abilities during this critical period. As neuroinflammation subsides and tissue degradation diminishes, the processes of neuroplasticity and angiogenesis intensify. An important factor in brain physiology and pathology, particularly neuroplasticity, is matrix metalloproteinase 9 (MMP-9). Its activity is modulated by tissue inhibitors of metalloproteinases (TIMPs), which impede substrate binding and activity by binding to its active sites. Notably, TIMP-1 specifically targets MMP-9 among other matrix metalloproteinases (MMPs). Our present study examines whether MMP-9 may play a beneficial role in psychological functions, particularly in alleviating depressive symptoms and enhancing specific cognitive domains, such as calculation. It appears that improvements in depressive symptoms during rehabilitation were notably linked with baseline MMP-9 plasma levels (r = -0.36, p = 0.025), and particularly so with the ratio of MMP-9 to TIMP-1, indicative of active MMP-9 (r = -0.42, p = 0.008). Furthermore, our findings support previous research demonstrating an inverse relationship between pre-rehabilitation MMP-9 serum levels and post-rehabilitation motor function. Crucially, our study emphasizes a positive correlation between cognition and motor function, highlighting the necessity of integrating both aspects into rehabilitation planning. These findings demonstrate the potential utility of MMP-9 as a prognostic biomarker for delineating recovery trajectories and guiding personalized treatment strategies for stroke patients during the subacute phase.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Accidente Cerebrovascular , Inhibidor Tisular de Metaloproteinasa-1 , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/metabolismo , Humanos , Inhibidor Tisular de Metaloproteinasa-1/sangre , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Masculino , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/sangre , Femenino , Estudios Prospectivos , Anciano , Recuperación de la Función , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular , Biomarcadores/sangre
4.
Brain Sci ; 13(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37371326

RESUMEN

The key period in post-stroke recovery is the first three months due to the high activity of spontaneous and therapeutic-induced processes related to neuroplasticity, angiogenesis and reperfusion. Therefore, the present study examines the expression of VEGF, IGF-1 and MMP-9 proteins and their genes to identify biomarkers that can prognose brain repair ability and thus estimate the outcome of stroke. It also identifies possible associations with clinical scales, including cognitive assessment and depression scales. The study group comprised 32 patients with moderate ischemic stroke severity, three to four weeks after incident. The results obtained after three-week hospitalization indicate a statistically significant change in clinical parameter estimations, as well as in MMP9 and VEGF protein and mRNA expression, over the rehabilitation process. Our findings indicate that combined MMP9 protein and mRNA expression might be a useful biomarker for cognitive improvement in post-stroke patients, demonstrating 87% sensitivity and 71% specificity (p < 0.0001).

5.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560126

RESUMEN

Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática/métodos , Reacción en Cadena de la Polimerasa
6.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142851

RESUMEN

Ionizing radiation (IR) can pass through the human body easily, potentially causing severe damage to all biocomponents, which is associated with increasing oxidative stress. IR is employed in radiotherapy; however, in order to increase safety, it is necessary to minimize side effects through the use of radioprotectors. Water-soluble derivatives of fullerene exhibit antiradical and antioxidant properties, and these compounds are regarded as potential candidates for radioprotectors. We examined the ability of fullerenol C60(OH)36 to protect human erythrocytes, including the protection of the erythrocytal antioxidant system against high-energy electrons. Human erythrocytes irradiated with high-energy [6 MeV] electrons were treated with C60(OH)36 (150 µg/mL), incubated and haemolyzed. The radioprotective properties of fullerenol were determined by examining the antioxidant enzymes activity in the hemolysate, the concentration of -SH groups, as well as by determining erythrocyte microviscosity. The irradiation of erythrocytes (650 and 1300 Gy) reduces the number of thiol groups; however, an attenuation of this harmful effect is observed (p < 0.05) in the presence of C60(OH)36. Although no significant effect of fullerenol was recorded on catalase activity, which was preserved in both control and test samples, a more active protection of other enzymes was evident. An irradiation-induced decrease in the activity of glutathione peroxidase and glutathione reductase became an increase in the activity of those two enzymes in samples irradiated in the presence of C60(OH)36 (p < 0.05 and p < 0.05, respectively). The fourth studied enzyme, glutathione transferase, decreased (p < 0.05) its activity in the irradiated hemolysate treated with C60(OH)36, thus, indicating a lower level of ROS in the system. However, the interaction of fullerenol with the active centre of the enzyme cannot be excluded. We also noticed that radiation caused a dose-dependent decrease in the erythrocyte microviscosity, and the presence of C60(OH)36 reduced this effect (p < 0.05). Overall, we point to the radioprotective effect of C60(OH)36 manifested as the protection of the antioxidant enzymes of human erythrocytes against IR-induced damage, which has not been the subject of intense research so far.


Asunto(s)
Fulerenos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/farmacología , Electrones , Eritrocitos/metabolismo , Fulerenos/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa , Glutatión Transferasa , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/farmacología , Compuestos de Sulfhidrilo/farmacología , Agua/farmacología
7.
Nutrients ; 14(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807941

RESUMEN

Hypovitaminosis D is a serious public health problem, representing an independent factor in mortality among the general population. Vitamin D deficiency may affect up to one billion people worldwide. Recently, the potential association between vitamin D levels and stroke has gained increasing attention. Many studies suggest that maintaining normal serum vitamin D levels is associated with improvement of the cardiovascular system and a reduction in stroke risk. As a neurosteroid, vitamin D influences brain development and function and immunomodulation and affects brain neuroplasticity. It supports many processes that maintain homeostasis in the body. As stroke is the second most common cause of death worldwide, more studies are needed to confirm the positive effects of vitamin D supplementation, its dosage at different stages of the disease, method of determination, and effect on stroke onset and recovery. Many studies on stroke survivors indicate that serum vitamin D levels only offer insignificant benefits and are not beneficial to recovery. This review article aims to highlight recent publications that have examined the potential of vitamin D supplementation to improve rehabilitation outcomes in stroke survivors. Particular attention has been paid to stroke prevention.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Deficiencia de Vitamina D , Suplementos Dietéticos , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/prevención & control , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas/uso terapéutico
8.
J Clin Med ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566599

RESUMEN

Stroke as the most frequent cause of disability is a challenge for the healthcare system as well as an important socio-economic issue. Therefore, there are currently a lot of studies dedicated to stroke recovery. Stroke recovery processes include angiogenesis and neuroplasticity and advances in neuroimaging techniques may provide indirect description of this action and become quantifiable indicators of these processes as well as responses to the therapeutical interventions. This means that neuroimaging and neurophysiological methods can be used as biomarkers-to make a prognosis of the course of stroke recovery and define patients with great potential of improvement after treatment. This approach is most likely to lead to novel rehabilitation strategies based on categorizing individuals for personalized treatment. In this review article, we introduce neuroimaging techniques dedicated to stroke recovery analysis with reference to angiogenesis and neuroplasticity processes. The most beneficial for personalized rehabilitation are multimodal panels of stroke recovery biomarkers, including neuroimaging and neurophysiological, genetic-molecular and clinical scales.

9.
J Clin Med ; 11(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35456245

RESUMEN

Stroke is an acute neurovascular central nervous system (CNS) injury and one of the main causes of long-term disability and mortality. Post-stroke rehabilitation as part of recovery is focused on relearning lost skills and regaining independence as much as possible. Many novel strategies in neurorehabilitation have been introduced. This review focuses on current evidence of the effectiveness of repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation (NIBS), in post-stroke rehabilitation. Moreover, we present the effects of specific interventions, such as low-frequency or high-frequency rTMS therapy, on motor function, cognitive function, depression, and aphasia in post-stroke patients. Collected data suggest that high-frequency stimulation (5 Hz and beyond) produces an increase in cortical excitability, whereas low-frequency stimulation (≤1 Hz) decreases cortical excitability. Accumulated data suggest that rTMS is safe and can be used to modulate cortical excitability, which may improve overall performance. Side effects such as tingling sensation on the skin of the skull or headache are possible. Serious side effects such as epileptic seizures can be avoided by adhering to international safety guidelines. We reviewed clinical studies that present promising results in general recovery and stimulating neuroplasticity. This article is an overview of the current rTMS state of knowledge related to benefits in stroke, as well as its cellular and molecular mechanisms. In the stroke rehabilitation literature, there is a key methodological problem of creating double-blinding studies, which are very often impossible to conduct.

10.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216103

RESUMEN

An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.


Asunto(s)
Carotenoides/farmacología , Plasticidad Neuronal/efectos de los fármacos , Animales , Sistema Nervioso Central/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
11.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639048

RESUMEN

Cognitive function decline is strictly related to age, resulting in the loss of the ability to perform daily behaviors and is a fundamental clinical neurodegeneration symptom. It has been proven that an adequate diet, comprehensive nutrition, and a healthy lifestyle may significantly inhibit neurodegenerative processes, improving cognitive functions. Therefore, intensive research has been conducted on cognitive-enhancing treatment for many years, especially with substances of natural origin. There are several intervention programs aimed at improving cognitive functions in elderly adults. Cognitive functions depend on body weight, food consumed daily, the quality of the intestinal microflora, and the supplements used. The effectiveness in the prevention of dementia is particularly high before the onset of the first symptoms. The impact of diet and nutrition on age-associated cognitive decline is becoming a growing field as a vital factor that may be easily modified, and the effects may be observed on an ongoing basis. The paper presents a review of the latest preclinical and clinical studies on the influence of natural antioxidants on cognitive functions, with particular emphasis on neurodegenerative diseases. Nevertheless, despite the promising research results in animal models, the clinical application of natural compounds will only be possible after solving a few challenges.


Asunto(s)
Envejecimiento , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Enfermedades Neurodegenerativas/complicaciones , Animales , Antioxidantes/farmacología , Productos Biológicos/farmacología , Ensayos Clínicos como Asunto , Cognición/efectos de los fármacos , Trastornos del Conocimiento/diagnóstico , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Suplementos Dietéticos , Evaluación Preclínica de Medicamentos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Resultado del Tratamiento
12.
J Clin Med ; 10(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34501229

RESUMEN

Aphasia is one of the most common clinical features of functional impairment after a stroke. Approximately 21-40% of stroke patients sustain permanent aphasia, which progressively worsens one's quality of life and rehabilitation outcomes. Post-stroke aphasia treatment strategies include speech language therapies, cognitive neurorehabilitation, telerehabilitation, computer-based management, experimental pharmacotherapy, and physical medicine. This review focuses on current evidence of the effectiveness of impairment-based aphasia therapies and communication-based therapies (as well as the timing and optimal treatment intensities for these interventions). Moreover, we present specific interventions, such as constraint-induced aphasia therapy (CIAT) and melodic intonation therapy (MIT). Accumulated data suggest that using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) is safe and can be used to modulate cortical excitability. Therefore, we review clinical studies that present TMS and tDCS as (possible) promising therapies in speech and language recovery, stimulating neuroplasticity. Several drugs have been used in aphasia pharmacotherapy, but evidence from clinical studies suggest that only nootropic agents, donepezil and memantine, may improve the prognosis of aphasia. This article is an overview on the current state of knowledge related to post-stroke aphasia pharmacology, rehabilitation, and future trends.

13.
Nutrients ; 13(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34444864

RESUMEN

Nutrition and rehabilitation are crucial in post-stroke recovery, especially in the elderly. Since stroke is the leading cause of long-term disability, there is a need to promote special, individually tailored nutrition strategies targeting older patients with low motor ability. Chronic stroke survivors have higher risk of developing nutrition-related chronic diseases, such as sarcopenia, anemia, type 2 diabetes mellitus and osteoporosis. Moreover, reduced motor activity, cognitive impairment and depression might be aggravated by poor malnutrition status. Accumulated data suggest that nutritional supplements and neuroprotective diets can be associated with better effectiveness of post-stroke rehabilitation as well as brain recovery. Therefore, this review focuses on preventive strategies that can improve dietary intake and change dietary patterns. We highlight the importance of neuroprotective diets, the problem of dysphagia and the role of nutrition in rehabilitation. This article focuses on potential nutritional supplements and neuroprotective diets that may have an impact on functional recovery during and after rehabilitation. Moreover, a new approach to post-stroke neuroplasticity including the use of agents from marine sources such as fucoxanthin and tramiprosate as compounds that might be used as potential neuroprotectants with antioxidative and anti-inflammatory properties is introduced.


Asunto(s)
Dieta/métodos , Suplementos Dietéticos , Desnutrición/prevención & control , Terapia Nutricional/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Anciano de 80 o más Años , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Ingestión de Alimentos , Femenino , Humanos , Masculino , Desnutrición/etiología , Neuroprotección , Fármacos Neuroprotectores , Estado Nutricional , Recuperación de la Función , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología
14.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360658

RESUMEN

Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Productos Biológicos/farmacología , Suplementos Dietéticos , Desnutrición/prevención & control , Neuroprotección , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Humanos
15.
Brain Sci ; 11(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808851

RESUMEN

The present preliminary case-control study was undertaken to detect the potential association of six single nucleotide polymorphisms (SNPs) in oxidative stress-related genes: SOD2 (c.47T > C; rs4880), CAT (c.-89A > T; rs7943316), GPX4 (c.660T > A; rs713041), NOS1 (g.117803515C > T; rs1879417) and NOS2 (c.1823C > T; rs2297518 and c.-227G > C; rs10459953) and the occurrence of a stroke. The SNPs were determined using the TaqMan® Allelic Discrimination Assay in 107 patients with strokes and 107 age- and sex-matched individuals who had not experienced cerebrovascular accidents. The T alleles of the rs4880 were positively correlated with a stroke (bootstrap OR 1.31; 1.07-1.59 95% CI). In the case of the rs713041, an association with the T allele was found (bootstrap OR 1.36; 1.12-1.67). In addition, the occurrence of a stroke was associated with the presence of the C allele of the rs1879417 (bootstrap OR 1.32; 1.09-1.61). We also found that the C/C genotype and C allele of the rs2297518 increased the risk of a stroke (bootstrap ORs 7.00; 4.34-11.29 and 4.96; 3.88-6.34, respectively). Moreover, the C allele of the rs10459953 was associated with an increased occurrence of this disease (bootstrap OR 1.31; 1.08-1.60). These results indicated that genetics variants in the SOD2, GPX4, NOS1 and NOS2 might be associated with susceptibility to strokes in the Polish population.

16.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920472

RESUMEN

Several key issues impact the clinical practice of stroke rehabilitation including a patient's medical history, stroke experience, the potential for recovery, and the selection of the most effective type of therapy. Until clinicians have answers to these concerns, the treatment and rehabilitation are rather intuitive, with standard procedures carried out based on subjective estimations using clinical scales. Therefore, there is a need to find biomarkers that could predict brain recovery potential in stroke patients. This review aims to present the current state-of-the-art stroke recovery biomarkers that could be used in clinical practice. The revision of biochemical biomarkers has been developed based on stroke recovery processes: angiogenesis and neuroplasticity. This paper provides an overview of the biomarkers that are considered to be ready-to-use in clinical practice and others, considered as future tools. Furthermore, this review shows the utility of biomarkers in the development of the concept of personalized medicine. Enhancing brain neuroplasticity and rehabilitation facilitation are crucial concerns not only after stroke, but in all central nervous system diseases.


Asunto(s)
Neovascularización Fisiológica , Plasticidad Neuronal , Medicina de Precisión , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/metabolismo , Biomarcadores/metabolismo , Humanos
17.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008545

RESUMEN

Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50-150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100-150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.


Asunto(s)
Antioxidantes/metabolismo , Eritrocitos/efectos de los fármacos , Fulerenos/farmacología , Eritrocitos/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
18.
Antioxidants (Basel) ; 9(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114058

RESUMEN

Neuroplasticity is a complex physiological process occurring in the brain for its entire life. However, it is of particular importance in the case of central nervous system (CNS) disorders. Neurological recovery largely depends on the ability to reestablish the structural and functional organization of neurovascular networks, which must be pharmacologically supported. For this reason, new forms of therapy are constantly being sought. Including adjuvant therapies in standard treatment may support the enhancement of repair processes and restore impaired brain functions. The common hallmark of nerve tissue damage is increased by oxidative stress and inflammation. Thus, the studies on flavonoids with strong antioxidant and anti-inflammatory properties as a potential application in neuro intervention have been carried out for a long time. However, recent results have revealed another important property of these compounds in CNS therapy. Flavonoids possess neuroprotective activity, and promote synaptogenesis and neurogenesis, by, among other means, inhibiting oxidative stress and neuroinflammation. This paper presents an overview of the latest knowledge on the impact of flavonoids on the plasticity processes of the brain, taking into account the molecular basis of their activity.

19.
Brain Sci ; 10(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366004

RESUMEN

Apoptosis in acute stroke is associated with a negative prognosis and is correlated with the severity of the neurological deficit. However, there is no evidence that indicates that, in the subacute phase of the stroke, the apoptosis process might activate neuroplasticity. Therefore, in this study, we investigated the effect of an extremely low frequency electromagnetic field (ELF-EMF) on the molecular mechanism of apoptosis, as used in the rehabilitation of post-stroke patients. Patients with moderate stroke severity (n = 48), 3-4 weeks after incident, were enrolled in the analysis and divided into ELF-EMF and non-ELF-EMF group. The rehabilitation program in both groups involves the following: kinesiotherapy-30 min; psychological therapy-15 min; and neurophysiological routines-60 min. Additionally, the ELF-EMF group was exposed to an ELF-EMF (40 Hz, 5 mT). In order to assess the apoptosis gene expression level, we measured the mRNA expression of BAX, BCL-2, CASP8, TNFα, and TP53. We found that ELF-EMF significantly increased the expression of BAX, CASP8, TNFα, and TP53, whereas the BCL-2 mRNA expression after ELF-EMF exposition remained at a comparable level in both groups. Thus, we suggest that increasing the expression of pro-apoptotic genes in post-stroke patients promotes the activation of signaling pathways involved in brain plasticity processes. However, further research is needed to clarify this process.

20.
J Clin Med ; 8(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31817010

RESUMEN

The abnormal activation of the tryptophan catabolites pathway (TRYCATs) is observed in patients suffering from cerebrovascular disease, including stroke. A previous study confirmed that lower bioavailability of tryptophan for serotonin synthesis was characterized in the patients during the acute stroke phase. Interestingly, according to various studies, polymorphisms of the genes involved in the TRYCATs pathway may modulate the risk of stroke occurrence. Therefore, this study aimed to investigate the association between the occurrence of TPH1, TPH2, KAT1, KAT2 and IDO1 polymorphisms and the risk of stroke development.The following 10 polymorphisms of the genes encoding enzymes of the TRYCATs pathway were selected: c.804-7C > A (rs10488682), c.-1668T > A (rs623580), c.803+221C > A (rs1800532), c.-173A > T (rs1799913) - TPH1, c.-1449C > A (rs7963803), and c.-844G > T (rs4570625) - TPH2. c.*456G > A of KAT1 (rs10988134), c.975-7T > C of KAT2 (rs1480544), c.-1849C > A (rs3824259) and c. -1493G > C (rs10089084) of IDO1. The study was carried out on DNA isolated from the peripheral blood taken from 107 patients after a stroke and 107 healthy volunteers. All DNA samples were genotyped using TaqMan probes. The genotypes of eight studied polymorphisms modulated the risk of stroke. No significant difference in genotype and allele frequencies of the c.804-7C > A -TPH1 (rs10488682) and c.*456G > A - KAT1 (rs10988134) polymorphisms were found between patients and controls. Having performed haplotype and gen-gen analyses, it was possible to determine that patients after a stroke and controls differed in terms of the frequency of selected genotypes and haplotypes. Among the studied polymorphisms, eight SNPs were linked with stroke risk modulation. The results obtained confirmed our hypothesis regarding the involvement of the TRYCATs pathway in the pathogenesis of stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA