Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 100: 398-414, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31539653

RESUMEN

Zinc- and calcium-containing magnesium alloys, denominated ZX alloys, excel as temporary implant materials because of their composition made of physiologically essential minerals and lack of commonly used rare-earth alloying elements. This study documents the specific role of nanometric intermetallic particles (IMPs) on the in vitro and in vivo biocorrosion behavior of two ZX-lean alloys, Mg‒Zn1.0‒Ca0.3 (ZX10) and Mg‒Zn1.5‒Ca0.25 (ZX20) (in wt.%). These alloys were designed according to thermodynamic considerations by finely adjusting the nominal Zn content towards microstructures that differ solely in the type of phase composing the IMPs: ZX10, with 1.0 wt.% Zn, hosts binary Mg2Ca-phase IMPs, while ZX20, with 1.5 wt.% Zn, hosts ternary IM1-phase IMPs. Electrochemical methods and the hydrogen-gas evolution method were deployed and complemented by transmission electron microscopy analyses. These techniques used in concert reveal that the Mg2Ca-type IMPs anodically dissolve preferentially and completely, while the IM1-type IMPs act as nano-cathodes, facilitating a faster dissolution of ZX20 compared to ZX10. Additionally, a dynamically increasing cathodic reactivity with progressing dissolution was observed for both alloys. This effect is explained by redeposits of Zn on the corroding surface, which act as additional nano-cathodes and facilitate enhanced cathodic reaction kinetics. The higher degradation rate of ZX20 was verified in vivo via micro-computed tomography upon implantation of both materials into femurs of Sprague DawleyⓇ rats. Both alloys were well integrated with direct bone‒implant contact observable 4 weeks post operationem, and an appropriately slow and homogeneous degradation could be observed with no adverse effects on the surrounding tissue. The results suggest that both alloys qualify as new temporary implant materials, and that a minor adjustment of the Zn content may function as a lever for tuning the degradation rate towards desired applications. STATEMENT OF SIGNIFICANCE: In Mg‒Zn‒Ca (ZX)-lean alloys Zn is the most electropositive element, and thus requires special attention in the investigation of biocorrosion mechanisms acting on these alloys. Even a small increase of only 0.5 wt.% Zn is shown to accelerate the biodegradation rate in both simulated body conditions and in vivo. This is possible due to Zn's role in influencing the type of intermetallic particles (IMPs) in these alloys. These IMPs in turn, even though minute in size, are shown to govern the biocorrosion behavior on the macroscopic scale. The deep understanding gained in this study on the role of Zn and of the IMP type it governs is crucial to ensuring a safe and controllable implant degradation.


Asunto(s)
Aleaciones/química , Calcio/química , Magnesio/química , Zinc/química , Animales , Líquidos Corporales/química , Huesos/fisiología , Corrosión , Electricidad , Técnicas Electroquímicas , Electrodos , Hidrógeno/química , Implantes Experimentales , Ratas Sprague-Dawley , Termodinámica , Tomografía Computarizada por Rayos X
2.
Neoplasma ; 63(6): 925-933, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27565330

RESUMEN

We report on a simple iron oxide (Venofer) labeling procedure of dental pulp mesenchymal stem cells (DP-MSCs) and DP-MSCs transduced with yeast cytosinedeaminase::uracilphosphoribosyltransferase (yCD::UPRT-DP-MSCs). Venofer is a drug approved for intravenous application to treat iron deficiency anemia in patients. Venofer labeling did not affect DP-MSCs or yCD::UPRT-DP-MSCs viability and growth kinetics. Electron microscopy of labeled cells showed internalized Venofer nanoparticles in endosomes. MRI relativity measurement of Venofer labeled DP-MSCs in a phantom arrangement revealed that 100 cells per 0.1 ml were still detectable. DP-MSCs or yCD::UPRT-DP-MSCs and the corresponding Venofer labeled cells release exosomes into conditional medium (CM). CM from yCD::UPRT-DP-MSCs in the presence of a prodrug 5-fluorocytosine caused tumor cell death in a dose dependent manner. Iron labeled DP-MSCs or yCD::UPRT-DP-MSCs sustained their tumor tropism in vivo; intra-nasally applied cells migrated and specifically engrafted orthotopic glioblastoma xenografts in rats.


Asunto(s)
Pulpa Dental/citología , Exosomas , Glioblastoma , Células Madre Mesenquimatosas , Administración Intranasal , Movimiento Celular , Proliferación Celular , Sacarato de Óxido Férrico/farmacocinética , Humanos
3.
Neoplasma ; 62(4): 521-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25997965

RESUMEN

Mesenchymal stromal cells (MSC) exhibit beneficial properties to serve as cellular vehicles for enzyme/prodrug cancer gene therapy approaches. We have previously shown that engineered human adipose tissue-derived MSC in combination with non-toxic prodrug mediated substantial cytotoxic and antitumor effect. The aim of this study was to develop advanced 3D cultivation method to serve for modelling of the therapeutic outcome in vitro. We have used engineered MSC expressing fusion transgene cytosine deaminase::uracilphosphoribosyltransferase (CD-MSC) in combination with prodrug 5-fluorocytosine (5FC). This therapeutic regimen designated CD-MSC/5FC was combined with the human melanoma cells A375 or EGFP-A375 in both standard monolayer culture and 3-dimensional (3D) multicellular nodules. The extent of cytotoxicity was evaluated by standard viability assay MTS, ATP-based luminescence assay, fluorimetric test, measurement of Caspase-3/7 activation and DNA laddering. The data have shown that the extent of cytotoxic bystander effect mediated by CD-MSC/5FC is significantly lower in 3D culture conditions. However, these data better recapitulate the therapeutic efficiency as observed previously in vivo. We suggest here to use the 3D multicellular culture conditions for better prediction of the therapeutic outcome in mouse xenograft models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...