Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645265

RESUMEN

Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genomes revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.

2.
Biol Open ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38526188

RESUMEN

Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack primordial layer cardiomyocytes and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.


Asunto(s)
Miocardio , Pez Cebra , Animales , Humanos , Adulto , Pez Cebra/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Evolución Biológica , Mamíferos
3.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534508

RESUMEN

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.

4.
mBio ; 14(5): e0021923, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37606367

RESUMEN

IMPORTANCE: A major focus of host-microbe research is to understand how genetic differences, of various magnitudes, among hosts translate to differences in their microbiomes. This has been challenging for animal hosts, including humans, because it is difficult to control environmental variables tightly enough to isolate direct genetic effects on the microbiome. Our work in stickleback fish is a significant contribution because our experimental approach allowed strict control over environmental factors, including standardization of the microbiome from the earliest stage of development and unrestricted co-housing of fish in a truly common environment. Furthermore, we measured host genetic variation over 2,000 regions of the stickleback genome, comparing this information and microbiome composition data among fish from very similar and very different genetic backgrounds. Our findings highlight how differences in the host genome influence microbiome diversity and make a case for future manipulative microbiome experiments that use host systems with naturally occurring genetic variation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Smegmamorpha , Animales , Humanos , Microbioma Gastrointestinal/genética , Microbiota/genética , Smegmamorpha/genética , Genoma , Genómica
5.
PLoS One ; 18(8): e0286473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37561720

RESUMEN

Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.


Asunto(s)
Antihelmínticos , Praziquantel , Animales , Humanos , Praziquantel/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Estudio de Asociación del Genoma Completo , Antihelmínticos/farmacología , Schistosoma
6.
Brain Behav Immun Health ; 31: 100645, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37484196

RESUMEN

Objective and design: Preclinical studies suggest learned immune system responses to alcohol cues and consumption may contribute to alcohol's pharmacodynamic properties and/or Alcohol Use Disorder (AUD) pathogenesis. Mechanistically, these immune alterations may be associated with increased craving and alcohol consumption, both acutely and over time. We sought to characterize this relationship in a randomized, counter-balanced, crossover neuroimaging experiment which took place between June 2020-November 2021. Methods: Thirty-three binge drinkers (BD) and 31 non-binge, social drinkers (SD), matched for demographic and psychological variables, were exposed to alcohol cues and water cues in two separate 7 T functional magnetic resonance imaging (fMRI) scans. Each scan was followed by the Alcohol Taste Test (ATT) of implicit motivation for acute alcohol. Craving measures and blood cytokine levels were collected repeatedly during and after scanning to examine the effects of alcohol cues and alcohol consumption on craving levels, Tumor necrosis factor alpha (TNF-α), and Interleukin 6 (IL-6) levels. A post-experiment one-month prospective measurement of participants' "real world" drinking behavior was performed to approximate chronic effects. Results: BD demonstrated significantly higher peak craving and IL-6 levels than SD in response to alcohol cues and relative to water cues. Ventromedial Prefrontal Cortex (VmPFC) signal change in the alcohol-water contrast positively related to alcohol cue condition craving and IL-6 levels, relative to water cue condition craving and IL-6 levels, in BD only. Additionally, peak craving and IL-6 levels were each independently related to ATT alcohol consumption and the number of drinks consumed in the next month for BD, again after controlling for craving and IL-6 repones to water cues. However, TNF-α release in the alcohol cue condition was not related to craving, neural activation, IL-6 levels, immediate and future alcohol consumption in either group after controlling for water cue condition responses. Conclusions: In sum, BD show greater craving and IL-6 release in the alcohol cue condition than SD, both of which were associated with prefrontal cue reactivity, immediate alcohol consumption, and future alcohol consumption over the subsequent 30 days. Alcohol associated immune changes and craving effects on drinking behavior may be independent of one another or may be indicative of a common pathway by which immune changes in BD could influence motivation to consume alcohol. Trial registration: Clinical Trials NCT04412824.

7.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37461520

RESUMEN

Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack embryonic-like primordial layer cardiomyocytes, and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.

8.
J Otolaryngol Head Neck Surg ; 52(1): 44, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400904

RESUMEN

INTRODUCTION: Resection of the mandible and temporomandibular joint (TMJ) without formal reconstruction is a devastating condition that negatively affects all aspects of the patient's life. We have approached the reconstruction of mandibular defects that include the condyle with simultaneous reconstruction with a vascularized free fibular flap (FFF) using Surgical Design and Simulation (SDS) and alloplastic TMJ prosthesis. The objective of this study is to report the functional and quality of life (QOL) outcomes in a cohort of patients that had undergone our reconstructive protocol. METHODS: This was a prospective case series of adult patients that underwent mandibular reconstruction with FFF and alloplastic TMJ prosthesis at the our center. Pre-operative and post-operative maximum inter-incisal opening (MIO) measurements were collected, and patients completed a QOL questionnaire (EORTC QLQ-H&N35) during those perioperative visits. RESULTS: Six patients were included in the study. The median patient age was 53 years. Heat map analysis of the QOL questionnaire revealed that patients reported a positive clinically significant change in the domains of pain, teeth, mouth opening, dry mouth, sticky saliva, and senses (relative change of 2.0, 3.3, 3.3, 2.0, 2.0, and 1.0 respectively). There were no negative clinically significant changes. There was a median perioperative MIO increase of 15.0 mm, and this was statistically significant (p = 0.027). CONCLUSIONS: This study highlights the complexities involved in mandibular reconstruction with involvement of the TMJ. Based on our findings, patients can obtain an acceptable QOL and good function following simultaneous reconstruction with FFF employing SDS and an alloplastic TMJ prosthesis.


Asunto(s)
Colgajos Tisulares Libres , Prótesis Articulares , Reconstrucción Mandibular , Adulto , Humanos , Persona de Mediana Edad , Reconstrucción Mandibular/métodos , Calidad de Vida , Articulación Temporomandibular/cirugía , Resultado del Tratamiento
9.
PLoS Pathog ; 19(4): e1011285, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011090

RESUMEN

Treatment of parasitic nematode infections in humans and livestock relies on a limited arsenal of anthelmintic drugs that have historically reduced parasite burdens. However, anthelmintic resistance (AR) is increasing, and little is known about the molecular and genetic causes of resistance for most drugs. The free-living roundworm Caenorhabditis elegans has proven to be a tractable model to understand AR, where studies have led to the identification of molecular targets of all major anthelmintic drug classes. Here, we used genetically diverse C. elegans strains to perform dose-response analyses across 26 anthelmintic drugs that represent the three major anthelmintic drug classes (benzimidazoles, macrocyclic lactones, and nicotinic acetylcholine receptor agonists) in addition to seven other anthelmintic classes. First, we found that C. elegans strains displayed similar anthelmintic responses within drug classes and significant variation across drug classes. Next, we compared the effective concentration estimates to induce a 10% maximal response (EC10) and slope estimates of each dose-response curve of each strain to the laboratory reference strain, which enabled the identification of anthelmintics with population-wide differences to understand how genetics contribute to AR. Because genetically diverse strains displayed differential susceptibilities within and across anthelmintics, we show that C. elegans is a useful model for screening potential nematicides before applications to helminths. Third, we quantified the levels of anthelmintic response variation caused by genetic differences among individuals (heritability) to each drug and observed a significant correlation between exposure closest to the EC10 and the exposure that exhibited the most heritable responses. These results suggest drugs to prioritize in genome-wide association studies, which will enable the identification of AR genes.


Asunto(s)
Antihelmínticos , Nematodos , Infecciones por Nematodos , Humanos , Animales , Caenorhabditis elegans , Estudio de Asociación del Genoma Completo , Antihelmínticos/farmacología , Nematodos/genética , Antinematodos/farmacología , Infecciones por Nematodos/tratamiento farmacológico , Infecciones por Nematodos/genética , Infecciones por Nematodos/parasitología , Resistencia a Medicamentos/genética
10.
G3 (Bethesda) ; 13(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36857313

RESUMEN

Wolbachia is a maternally transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus vs. host genotype on gene expression is unknown. Here, we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of 4 strains of Drosophila melanogaster (D. melanogaster) infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.


Asunto(s)
Drosophila melanogaster , Wolbachia , Animales , Drosophila melanogaster/genética , Wolbachia/genética , Genotipo , Perfilación de la Expresión Génica , Transcriptoma , Simbiosis
11.
Curr Probl Diagn Radiol ; 52(2): 130-133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36030139

RESUMEN

The incidence of burnout among radiologists has been increasing exponentially, largely attributed to increased work volumes, expectations for more rapid turn-around times and decreasing interpersonal interactions. While personal wellness activities have been described in the literature, there is little information on the role of cognitive behavioral therapy strategies to mitigate burnout. This manuscript will describe the value of naming automatic negative emotions which can lead to burnout and will provide an overview of strategies that can be used to combat them, using cognitive behavioral therapy techniques.


Asunto(s)
Agotamiento Profesional , Humanos , Agotamiento Profesional/prevención & control , Agotamiento Profesional/psicología , Radiólogos , Relaciones Interpersonales , Satisfacción en el Trabajo , Cognición
12.
Viruses ; 14(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560802

RESUMEN

The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Humanos , Animales , Caballos , Virus de la Encefalitis Equina Venezolana/fisiología , Barrera Hematoencefálica , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Encefalomielitis Equina Venezolana/prevención & control , Células Endoteliales , Sistemas Microfisiológicos
13.
Sci Adv ; 8(47): eadd7540, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417524

RESUMEN

Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of the Myotis species have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity.

14.
Acta Psychol (Amst) ; 231: 103793, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36402087

RESUMEN

Direct verbal suggestibility refers to the capacity for an individual to experience perceptual, motor, affective and cognitive changes in response to verbal suggestions. Suggestibility is characterized by pronounced, yet reliable, inter-individual differences. Previous research and theoretical considerations suggest that greater impulsivity and compulsivity is associated to higher suggestibility, but the characteristics and mediating factors of this association are poorly understood. Using established psychometric measures in an online sample, we found positive correlations between the domain comprising impulsivity, compulsivity and behavioural activation, and the domain of suggestibility, dissociation and absorption. We also observed that dissociation and absorption mediated the link between suggestibility and impulsivity, and between suggestibility and behavioural activation, respectively. These results confirm the positive link between suggestibility and the impulsivity/compulsivity domain and shed new light on the characterisation of traits associated with suggestibility.


Asunto(s)
Conducta Impulsiva , Sugestión , Humanos , Conducta Impulsiva/fisiología
15.
J Oral Maxillofac Surg ; 80(12): 1878-1892, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174661

RESUMEN

PURPOSE: Heterotopic ossification (HO) formed over the major components and fixation screw heads of an alloplastic temporomandibular joint replacement (TMJR) prosthesis can result in decreased quality of life, limited function, prosthesis failure, and hinder prosthesis revision, replacement, or removal. This study simulated HO removal from the major components and fixation screw heads of alloplastic TMJR prostheses using an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser and compared the results to conventional methods of HO removal. The surface morphology and chemical structure of the exposed components were analyzed. The investigators hypothesize that HO removal with an Er,Cr:YSGG laser causes less damage to TMJR prosthesis components compared to conventional HO removal methods. METHODS: This multiple test descriptive analysis simulated HO removal from TMJR prostheses mounted to stereolithic models. Simulated HO removal was completed using a novel Er,Cr:YSGG laser method and conventional methods which utilized a fissure carbide bur in a high-speed rotary instrument, a standard osteotome, and an ultrasonic aspirator. Surfaces exposed on the TMJR prostheses were analyzed for morphological or chemical change using scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. RESULTS: The Er,Cr:YSGG laser did not adversely affect the titanium screws or titanium components of the TMJR prostheses, while conventional methods of HO removal did. HO removal using the Er,Cr:YSGG laser and conventional methods both inflicted surface damage to the fossa ultrahigh molecular weight polyethylene component of the TMJR prostheses. CONCLUSION: Damage inflicted to titanium alloy or commercially pure titanium components of TMJR prostheses by conventional HO removal methods can be avoided by instead removing HO with an Er,Cr:YSGG laser. However, long exposure of the Er,Cr:YSGG laser to ultrahigh molecular weight polyethylene surfaces should be avoided. Additional research to expand on applications to other procedures and in other surgical fields is encouraged.


Asunto(s)
Láseres de Estado Sólido , Osificación Heterotópica , Humanos , Láseres de Estado Sólido/uso terapéutico , Titanio , Calidad de Vida , Osificación Heterotópica/cirugía , Polietilenos , Articulación Temporomandibular/cirugía
16.
Evol Appl ; 15(7): 1079-1098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899258

RESUMEN

The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.

17.
Evolution ; 76(9): 2162-2180, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863060

RESUMEN

In many animals, sperm competition and sexual conflict are thought to drive the rapid evolution of male-specific genes, especially those expressed in the testes. A potential exception occurs in the male pregnant pipefishes, where females transfer eggs to the males, eliminating testes from participating in these processes. Here, we show that testis-related genes differ dramatically in their rates of molecular evolution and expression patterns in pipefishes and seahorses (Syngnathidae) compared to other fish. Genes involved in testis or sperm function within syngnathids experience weaker selection in comparison to their orthologs in spawning and livebearing fishes. An assessment of gene turnover and expression in the testis transcriptome suggests that syngnathids have lost (or significantly reduced expression of) important classes of genes from their testis transcriptomes compared to other fish. Our results indicate that more than 50 million years of male pregnancy have removed syngnathid testes from the molecular arms race that drives the rapid evolution of male reproductive genes in other taxa.


Asunto(s)
Smegmamorpha , Animales , Femenino , Peces/genética , Masculino , Semen , Smegmamorpha/genética , Testículo , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 119(26): e2119602119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733255

RESUMEN

Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.


Asunto(s)
Genoma , Secuencias Repetitivas de Ácidos Nucleicos , Smegmamorpha , Animales , Factores de Crecimiento de Fibroblastos/genética , Genómica , Masculino , Filogenia , Smegmamorpha/anatomía & histología , Smegmamorpha/clasificación , Smegmamorpha/genética
19.
J Am Chem Soc ; 144(26): 11608-11619, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700317

RESUMEN

NMR spectroscopy is a powerful tool to investigate molecular structure and dynamics. The poor sensitivity of this technique, however, limits its ability to tackle questions requiring dilute samples. Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an optically enhanced NMR technology capable of addressing the above challenge by increasing the detection limit of aromatic amino acids in solution up to 1000-fold, either in isolation or within proteins. Here, we show that the absence of NMR-active nuclei close to a magnetically active site of interest (e.g., the structurally diagnostic 1Hα-13Cα pair of amino acids) is expected to significantly increase LC-photo-CIDNP hyperpolarization. Then, we exploit the spin-diluted tryptophan isotopolog Trp-α-13C-ß,ß,2,4,5,6,7-d7 and take advantage of the above prediction to experimentally achieve a ca 4-fold enhancement in NMR sensitivity over regular LC-photo-CIDNP. This advance enables the rapid (within seconds) detection of 20 nM concentrations or the molecule of interest, corresponding to a remarkable 3 ng detection limit. Finally, the above Trp isotopolog is amenable to incorporation within proteins and is readily detectable at a 1 µM concentration in complex cell-like media, including Escherichia coli cell-free extracts.


Asunto(s)
Proteínas , Triptófano , Aminoácidos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética/métodos , Triptófano/química
20.
Genetics ; 221(4)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35731216

RESUMEN

Parasitic nematodes are major human and agricultural pests, and benzimidazoles are amongst the most important broad-spectrum anthelmintic drug class used for their control. Benzimidazole resistance is now widespread in many species of parasitic nematodes in livestock globally and an emerging concern for the sustainable control of human soil-transmitted helminths. ß-tubulin is the major benzimidazole target, although other genes may influence resistance. Among the 6 Caenorhabditis elegans ß-tubulin genes, loss of ben-1 causes resistance without other apparent defects. Here, we explored the genetics of C. elegans ß-tubulin genes in relation to the response to the benzimidazole derivative albendazole. The most highly expressed ß-tubulin isotypes, encoded by tbb-1 and tbb-2, were known to be redundant with each other for viability, and their products are predicted not to bind benzimidazoles. We found that tbb-2 mutants, and to a lesser extent tbb-1 mutants, were hypersensitive to albendazole. The double mutant tbb-2 ben-1 is uncoordinated and short, resembling the wild type exposed to albendazole, but the tbb-1 ben-1 double mutant did not show the same phenotypes. These results suggest that tbb-2 is a modifier of albendazole sensitivity. To better understand how BEN-1 mutates to cause benzimidazole resistance, we isolated mutants resistant to albendazole and found that 15 of 16 mutations occurred in the ben-1 coding region. Mutations ranged from likely nulls to hypomorphs, and several corresponded to residues that cause resistance in other organisms. Null alleles of ben-1 are albendazole-resistant and BEN-1 shows high sequence identity with tubulins from other organisms, suggesting that many amino acid changes could cause resistance. However, our results suggest that missense mutations conferring resistance are not evenly distributed across all possible conserved sites. Independent of their roles in benzimidazole resistance, tbb-1 and tbb-2 may have specialized functions as null mutants of tbb-1 or tbb-2 were cold or heat sensitive, respectively.


Asunto(s)
Antihelmínticos , Tubulina (Proteína) , Albendazol/metabolismo , Albendazol/farmacología , Animales , Antihelmínticos/farmacología , Bencimidazoles/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Resistencia a Medicamentos/genética , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...