Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosurg Focus ; 57(3): E8, 2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217636

RESUMEN

OBJECTIVE: Advancements in MRI-guided focused ultrasound (MRgFUS) technology have led to the successful treatment of select movement disorders. Based on the comparative success between ablation and deep brain stimulation, interest arises in focused ultrasound (FUS) as a promising treatment modality for psychiatric illnesses. In this systematic review, the authors examined current applications of FUS for psychiatric conditions and explored its potential opportunities and challenges. METHODS: The authors performed a comprehensive review using the PRISMA guidelines of studies investigating psychiatric applications for FUS. Articles indexed on PubMed between 2014 to 2024 were included. The authors synthesized the psychiatric conditions treated, neural targets, outcomes, study design, and sonication parameters, and they reviewed important considerations for the treatment of psychiatric disorders with FUS. They also discussed active clinical trials in this research domain. RESULTS: Of 250 articles, 10 met the inclusion criteria. Eight articles investigated the clinical, safety, and imaging correlates of MRgFUS in obsessive-compulsive disorder (OCD), whereas 3 examined treatment-resistant depression. Bilateral anterior capsulotomy resulted in a full responder rate of 67% (≥ 35% reduction in the Yale-Brown Obsessive-Compulsive Scale score) and 33% (≥ 50% reduction in the score on the Hamilton Rating Scale for Depression) in OCD and treatment-resistant depression, respectively. Sonications ranged from 8 to 36 with targeted lesional temperatures of 51°C-56°C. Lesions in the anterodorsal aspect of the anterior limb of the internal capsule (ALIC) and increased functional connectivity to the left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex significantly predicted reduction in symptoms among patients with OCD, with decreases in beta-band activity in the frontocentral and temporal regions associated with reductions in depression and anxiety. Treatment of the nucleus accumbens with low-intensity FUS (LIFU) in patients with opioid-use disorders resulted in significant reductions in cue-reactive cravings, lasting up to 90 days. No serious adverse events were reported, including cognitive decline. Side effects were generally mild and transient, consisting of headaches, pin-site swelling, and nausea. Fourteen active clinical trials were identified, primarily targeting depression with LIFU. CONCLUSIONS: Currently, FUS for psychiatric conditions is centered on OCD, with early pilot studies demonstrating promising safety and efficacy. Further research expanding on defining optimal patient selection, study design, intensity, and sonication parameters is warranted, particularly as FUS expands to other psychiatric illnesses and incorporates LIFU paradigms. Ethical considerations such as patient consent and equitable access also remain paramount.


Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/terapia , Trastornos Mentales/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
2.
PLoS Biol ; 22(9): e3002774, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39241107

RESUMEN

Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 µm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 µm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.


Asunto(s)
Percepción del Habla , Lóbulo Temporal , Humanos , Lóbulo Temporal/fisiología , Percepción del Habla/fisiología , Adulto , Masculino , Femenino , Persona de Mediana Edad , Mapeo Encefálico/métodos , Lenguaje , Estimulación Acústica
3.
Neuromodulation ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878055

RESUMEN

OBJECTIVE: Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS: We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS: Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, ß peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative ß band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS: For this patient, an increase in ß band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.

4.
Sci Transl Med ; 16(744): eadj7257, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657026

RESUMEN

Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.


Asunto(s)
Encéfalo , Electroencefalografía , Animales , Encéfalo/fisiología , Electroencefalografía/métodos , Porcinos , Ratas , Neuronas/fisiología , Mapeo Encefálico/métodos , Ratas Sprague-Dawley , Electrocorticografía/métodos , Masculino
5.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366951

RESUMEN

Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.


Asunto(s)
Asteraceae , Isoquinolinas , Poríferos , Sulfonamidas , Humanos , Animales , Sustancias Húmicas , Ecosistema , Temperatura
6.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293030

RESUMEN

Modular organization is fundamental to cortical processing, but its presence is human association cortex is unknown. We characterized phoneme processing with 128-1024 channel micro-arrays at 50-200µm pitch on superior temporal gyrus of 7 patients. High gamma responses were highly correlated within ~1.7mm diameter modules, sharply delineated from adjacent modules with distinct time-courses and phoneme-selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.

7.
Nat Commun ; 15(1): 218, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233418

RESUMEN

Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.


Asunto(s)
Encéfalo , Neuronas , Humanos , Encéfalo/fisiología , Electrodos , Potenciales de Acción/fisiología , Neuronas/fisiología , Electrodos Implantados
8.
J Neurosurg ; 140(3): 665-676, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37874692

RESUMEN

OBJECTIVE: The study objective was to evaluate intraoperative experience with newly developed high-spatial-resolution microelectrode grids composed of poly(3,4-ethylenedioxythiophene) with polystyrene sulfonate (PEDOT:PSS), and those composed of platinum nanorods (PtNRs). METHODS: A cohort of patients who underwent craniotomy for pathological tissue resection and who had high-spatial-resolution microelectrode grids placed intraoperatively were evaluated. Patient demographic and baseline clinical variables as well as relevant microelectrode grid characteristic data were collected. The primary and secondary outcome measures of interest were successful microelectrode grid utilization with usable resting-state or task-related data, and grid-related adverse intraoperative events and/or grid dysfunction. RESULTS: Included in the analysis were 89 cases of patients who underwent a craniotomy for resection of neoplasms (n = 58) or epileptogenic tissue (n = 31). These cases accounted for 94 grids: 58 PEDOT:PSS and 36 PtNR grids. Of these 94 grids, 86 were functional and used successfully to obtain cortical recordings from 82 patients. The mean cortical grid recording duration was 15.3 ± 1.15 minutes. Most recordings in patients were obtained during experimental tasks (n = 52, 58.4%), involving language and sensorimotor testing paradigms, or were obtained passively during resting state (n = 32, 36.0%). There were no intraoperative adverse events related to grid placement. However, there were instances of PtNR grid dysfunction (n = 8) related to damage incurred by suboptimal preoperative sterilization (n = 7) and improper handling (n = 1); intraoperative recordings were not performed. Vaporized peroxide sterilization was the most optimal sterilization method for PtNR grids, providing a significantly greater number of usable channels poststerilization than did steam-based sterilization techniques (median 905.0 [IQR 650.8-935.5] vs 356.0 [IQR 18.0-597.8], p = 0.0031). CONCLUSIONS: High-spatial-resolution microelectrode grids can be readily incorporated into appropriately selected craniotomy cases for clinical and research purposes. Grids are reliable when preoperative handling and sterilization considerations are accounted for. Future investigations should compare the diagnostic utility of these high-resolution grids to commercially available counterparts and assess whether diagnostic discrepancies relate to clinical outcomes.


Asunto(s)
Sistemas de Computación , Craneotomía , Humanos , Microelectrodos , Lenguaje , Peróxidos
9.
J Craniofac Surg ; 34(7): e682-e684, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639663

RESUMEN

Syndrome of the Trephined (SoT) is a frequently misunderstood and underdiagnosed outcome of decompressive craniectomy, especially in cases of trauma. The pressure gradient between atmospheric pressure and the sub-atmospheric intracranial pressure results in a sinking of the scalp overlying the craniectomy site. This gradually compresses the underlying brain parenchyma. This parenchymal compression can disrupt normal autoregulation and subsequent metabolism, yielding symptoms ranging from headaches, dizziness, altered behavior to changes in sensation, and difficulty with ambulation, coordination, and activities of daily living. We present a case of SoT treated with a 3D-printed custom polycarbonate external cranial orthotic that allowed us to re-establish this pressure gradient by returning the cranium to a closed system. The patient demonstrated subjective improvement in quality of life and his symptoms. This was consistent with the re-expanded brain parenchyma on CT imaging.


Asunto(s)
Craniectomía Descompresiva , Trepanación , Humanos , Actividades Cotidianas , Calidad de Vida , Cráneo/diagnóstico por imagen , Cráneo/cirugía , Impresión Tridimensional
10.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503216

RESUMEN

Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (µLEDs) in polyimide substrates. We then laminated the µLED arrays on the back of micro-electrocorticography (µECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA