Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Neurosci ; 24(1): 5, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658491

RESUMEN

BACKGROUND: Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2+/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS: We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2+/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS: We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS: The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2+/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS: We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2+/- rats.


Asunto(s)
Trastorno Autístico , Interneuronas , Humanos , Ratas , Animales , Trastorno Autístico/genética , Neuronas , Corteza Cerebral , Factores de Riesgo
3.
BMC Genomics ; 22(1): 635, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465293

RESUMEN

BACKGROUND: Brine shrimp Artemia have an unequalled ability to endure extreme salinity and complete anoxia. This study aims to elucidate its strategies to cope with these stressors. RESULTS AND DISCUSSION: Here, we present the genome of an inbred A. franciscana Kellogg, 1906. We identified 21,828 genes of which, under high salinity, 674 genes and under anoxia, 900 genes were differentially expressed (42%, respectively 30% were annotated). Under high salinity, relevant stress genes and pathways included several Heat Shock Protein and Leaf Embryogenesis Abundant genes, as well as the trehalose metabolism. In addition, based on differential gene expression analysis, it can be hypothesized that a high oxidative stress response and endocytosis/exocytosis are potential salt management strategies, in addition to the expression of major facilitator superfamily genes responsible for transmembrane ion transport. Under anoxia, genes involved in mitochondrial function, mTOR signalling and autophagy were differentially expressed. Both high salt and anoxia enhanced degradation of erroneous proteins and protein chaperoning. Compared with other branchiopod genomes, Artemia had 0.03% contracted and 6% expanded orthogroups, in which 14% of the genes were differentially expressed under high salinity or anoxia. One phospholipase D gene family, shown to be important in plant stress response, was uniquely present in both extremophiles Artemia and the tardigrade Hypsibius dujardini, yet not differentially expressed under the described experimental conditions. CONCLUSIONS: A relatively complete genome of Artemia was assembled, annotated and analysed, facilitating research on its extremophile features, and providing a reference sequence for crustacean research.


Asunto(s)
Artemia , Extremófilos , Animales , Artemia/genética , Ambientes Extremos , Proteínas de Choque Térmico , Salinidad
4.
Bio Protoc ; 11(6): e3952, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33855114

RESUMEN

The interaction between cell surface heparan sulphate and diffusible ligands such as FGFs is of vital importance for downstream signaling, however, there are few techniques that can be used to investigate this binding event. The ligand and carbohydrate engagement (LACE) assay is a powerful tool which can be used to probe the molecular interaction between heparan sulphate and diffusible ligands and can detect changes in binding that may occur following genetic or pharmacological intervention. In this protocol we describe an FGF17:FGFR1 LACE assay performed on embryonic mouse brain tissue. We also describe the method we have used to quantify changes in fluorescent LACE signal in response to altered HS sulphation.

5.
Front Physiol ; 11: 592016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192606

RESUMEN

Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.

6.
Cell Stress Chaperones ; 25(6): 803-804, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32897477
7.
Development ; 147(12)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32541009

RESUMEN

Thalamocortical axons (TCAs) cross several tissues on their journey to the cortex. Mechanisms must be in place along the route to ensure they connect with their targets in an orderly fashion. The ventral telencephalon acts as an instructive tissue, but the importance of the diencephalon in TCA mapping is unknown. We report that disruption of diencephalic development by Pax6 deletion results in a thalamocortical projection containing mapping errors. We used conditional mutagenesis to test whether these errors are due to the disruption of pioneer projections from prethalamus to thalamus and found that, although this correlates with abnormal TCA fasciculation, it does not induce topographical errors. To test whether the thalamus contains navigational cues for TCAs, we used slice culture transplants and gene expression studies. We found the thalamic environment is instructive for TCA navigation and that the molecular cues netrin 1 and semaphorin 3a are likely to be involved. Our findings indicate that the correct topographic mapping of TCAs onto the cortex requires the order to be established from the earliest stages of their growth by molecular cues in the thalamus itself.


Asunto(s)
Axones/fisiología , Diencéfalo/metabolismo , Tálamo/metabolismo , Animales , Diencéfalo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Mutagénesis , Netrina-1/metabolismo , Técnicas de Cultivo de Órganos , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Semaforina-3A/metabolismo , Tálamo/patología
8.
Bio Protoc ; 10(13): e3674, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659344

RESUMEN

Organotypic slice culture is a powerful technique for exploring the embryonic development of the mammalian brain. In this protocol we describe a basic slice culture technique we have used for two sets of experiments: axon guidance transplant assays and bead culture assays.

9.
J Neurosci ; 39(8): 1386-1404, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30617207

RESUMEN

Heparan sulfate (HS) is a cell surface and extracellular matrix carbohydrate extensively modified by differential sulfation. HS interacts physically with canonical fibroblast growth factor (FGF) proteins that signal through the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) pathway. At the embryonic mouse telencephalic midline, FGF/ERK signaling drives astroglial precursor somal translocation from the ventricular zone of the corticoseptal boundary (CSB) to the induseum griseum (IG), producing a focus of Slit2-expressing astroglial guidepost cells essential for interhemispheric corpus callosum (CC) axon navigation. Here, we investigated the cell and molecular function of a specific form of HS sulfation, 2-O HS sulfation catalyzed by the enzyme Hs2st, in midline astroglial development and in regulating FGF protein levels and interaction with HS. Hs2st-/- embryos of either sex exhibit a grossly enlarged IG due to precocious astroglial translocation and conditional Hs2st mutagenesis and ex vivo culture experiments show that Hs2st is not required cell autonomously by CC axons or by the IG astroglial cell lineage, but rather acts non-cell autonomously to suppress the transmission of translocation signals to astroglial precursors. Rescue of the Hs2st-/- astroglial translocation phenotype by pharmacologically inhibiting FGF signaling shows that the normal role of Hs2st is to suppress FGF-mediated astroglial translocation. We demonstrate a selective action of Hs2st on FGF protein by showing that Hs2st (but not Hs6st1) normally suppresses the levels of Fgf17 protein in the CSB region in vivo and use a biochemical assay to show that Hs2st (but not Hs6st1) facilitates a physical interaction between the Fgf17 protein and HS.SIGNIFICANCE STATEMENT We report a novel non-cell-autonomous mechanism regulating cell signaling in developing brain. Using the developing mouse telencephalic midline as an exemplar, we show that the specific sulfation modification of the cell surface and extracellular carbohydrate heparan sulfate (HS) performed by Hs2st suppresses the supply of translocation signals to astroglial precursors by a non-cell-autonomous mechanism. We further show that Hs2st modification selectively facilitates a physical interaction between Fgf17 and HS and suppresses Fgf17 protein levels in vivo, strongly suggesting that Hs2st acts selectively on Fgf17 signaling. HS interacts with many signaling proteins potentially encoding numerous selective interactions important in development and disease, so this class of mechanism may apply more broadly to other biological systems.


Asunto(s)
Astrocitos/metabolismo , Heparitina Sulfato/metabolismo , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Prosencéfalo/enzimología , Sulfatos/metabolismo , Sulfotransferasas/fisiología , Animales , Biomarcadores , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/análisis , Ratones , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/fisiología , Prosencéfalo/citología , Prosencéfalo/embriología , Sulfotransferasas/deficiencia , Factores de Transcripción/análisis
10.
Extremophiles ; 22(5): 751-759, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29869718

RESUMEN

We found that spores of Bacillus amyloliquefaciens rank amongst the most resistant to high temperatures with a maximum dry heat tolerance determined at 420 °C. We found that this extreme heat resistance was also maintained after several generations suggesting that the DNA was able to replicate after exposure to these temperatures. Nonetheless, amplifying the bacterial DNA using BOXA1R and (GTG)5 primers was unsuccessful immediately after extreme heating, but was successful after incubation of the heated then cooled spores. Moreover, enzymes such as amylases and proteases were active directly after heating and spore regeneration, indicating that DNA coding for these enzymes were not degraded at these temperatures. Our results suggest that extensive DNA damage may occur in spores of B. amyloliquefaciens directly after an extreme heat shock. However, the successful germination of spores after inoculation and incubation indicates that these spores could have a very effective DNA repair mechanism, most likely protein-based, able to function after exposure to temperatures up to 420 °C. Therefore, we propose that B. amyloliquefaciens is one of the most heat resistant life forms known to science and can be used as a model organism for studying heat resistance and DNA repair. Furthermore, the extremely high temperature resistivity of these spores has exceptional consequences for general methodology, such as the use of dry heat sterilization and, therefore, virtually all studies in the broad area of high temperature biology.


Asunto(s)
Bacillus amyloliquefaciens/fisiología , Ambientes Extremos , Esporas Bacterianas/fisiología , Termotolerancia , Amilasas/metabolismo , Proteínas Bacterianas/metabolismo , Daño del ADN , Desecación , Péptido Hidrolasas , Esporas Bacterianas/enzimología , Esporas Bacterianas/metabolismo
11.
Opt Express ; 26(3): 3661-3673, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401893

RESUMEN

This paper reports the development, modelling and application of a semi-random multicore fibre (MCF) design for adaptive multiphoton endoscopy. The MCF was constructed from 55 sub-units, each comprising 7 single mode cores, in a hexagonally close-packed lattice where each sub-unit had a random angular orientation. The resulting fibre had 385 single mode cores and was double-clad for proximal detection of multiphoton excited fluorescence. The random orientation of each sub-unit in the fibre reduces the symmetry of the positions of the cores in the MCF, reducing the intensity of higher diffracted orders away from the central focal spot formed at the distal tip of the fibre and increasing the maximum size of object that can be imaged. The performance of the MCF was demonstrated by imaging fluorescently labelled beads with both distal and proximal fluorescence detection and pollen grains with distal fluorescence detection. We estimate that the number of independent resolution elements in the final image - measured as the half-maximum area of the two-photon point spread function divided by the area imaged - to be ~3200.


Asunto(s)
Endoscopios , Endoscopía/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica , Fibras Ópticas , Diseño de Equipo , Microesferas , Polen
12.
BMC Biol ; 14: 16, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26941127

RESUMEN

BACKGROUND: In eukaryotes, tRNA trafficking between the nucleus and cytoplasm is a complex process connected with cell cycle regulation. Such trafficking is therefore of fundamental importance in cell biology, and disruption of this process has grave consequences for cell viability and survival. To cope with harsh habitats, Artemia has evolved a special reproductive mode to release encysted embryos in which cell division can be maintained in a dormancy state for a long period. RESULTS: Using Artemia as a peculiar model of the cell cycle, an La-related protein from Artemia, named Ar-Larp, was found to bind to tRNA and accumulate in the nucleus, leading to cell cycle arrest and controlling the onset of diapause formation in Artemia. Furthermore, exogenous gene expression of Ar-Larp could induce cell cycle arrest in cancer cells and suppress tumor growth in a xenograft mouse model, similar to the results obtained in diapause embryos of Artemia. Our study of tRNA trafficking indicated that Ar-Larp controls cell cycle arrest by binding to tRNAs and influencing their retrograde movement from the cytoplasm to the nucleus, which is connected to pathways involved in cell cycle checkpoints. CONCLUSIONS: These findings in Artemia offer new insights into the mechanism underlying cell cycle arrest regulation, as well as providing a potentially novel approach to study tRNA retrograde movement from the cytoplasm to the nucleus.


Asunto(s)
Artemia/citología , Proteínas de Artrópodos/metabolismo , Ciclo Celular , ARN de Transferencia/metabolismo , Animales , Puntos de Control del Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Femenino , Humanos , Ratones Endogámicos BALB C , Transporte de ARN
13.
Neural Dev ; 10: 26, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26520399

RESUMEN

BACKGROUND: In mouse embryos, the Pax6 transcription factor is expressed in the progenitors of thalamic neurons but not in thalamic neurons themselves. Its null-mutation causes early mis-patterning of thalamic progenitors. It is known that thalamic neurons generated by Pax6 (-/-) progenitors do not develop their normal connections with the cortex, but it is not clear why. We investigated the extent to which defects intrinsic to the thalamus are responsible. RESULTS: We first confirmed that, in constitutive Pax6 (-/-) mutants, the axons of thalamic neurons fail to enter the telencephalon and, instead, many of them take an abnormal path to the hypothalamus, whose expression of Slits would normally repel them. We found that thalamic neurons show reduced expression of the Slit receptor Robo2 in Pax6 (-/-) mutants, which might enhance the ability of their axons to enter the hypothalamus. Remarkably, however, in chimeras comprising a mixture of Pax6 (-/-) and Pax6 (+/+) cells, Pax6 (-/-) thalamic neurons are able to generate axons that exit the diencephalon, take normal trajectories through the telencephalon and avoid the hypothalamus. This occurs despite abnormalities in their molecular patterning (they express Nkx2.2, unlike normal thalamic neurons) and their reduced expression of Robo2. In conditional mutants, acute deletion of Pax6 from the forebrain at the time when thalamic axons are starting to grow does not prevent the development of the thalamocortical tract, suggesting that earlier extra-thalamic patterning and /or morphological defects are the main cause of thalamocortical tract failure in Pax6 (-/-) constitutive mutants. CONCLUSIONS: Our results indicate that Pax6 is required by thalamic progenitors for the normal molecular patterning of the thalamic neurons that they generate but thalamic neurons do not need normal Pax6-dependent patterning to become competent to grow axons that can be guided appropriately.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Tálamo/embriología , Animales , Axones/metabolismo , Proteínas del Ojo/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
PLoS One ; 10(6): e0130147, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075383

RESUMEN

Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic midline for high levels of Erk signaling by increasing the sensitivity of cells to an Fgf2 signal that is rather more widespread.


Asunto(s)
Embrión de Mamíferos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Sulfotransferasas/fisiología , Telencéfalo/metabolismo , Animales , Western Blotting , Embrión de Mamíferos/citología , Femenino , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Noqueados , Fosforilación , Transducción de Señal , Telencéfalo/citología
15.
J Biol Chem ; 289(25): 17541-52, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24764298

RESUMEN

The role of programmed cell death 4 (PDCD4) in tumor biology is context-dependent. PDCD4 is described as a tumor suppressor, but its coexpression with protein arginine methyltransferase 5 (PRMT5) promotes accelerated tumor growth. Here, we report that PDCD4 is methylated during nutrient deprivation. Methylation occurs because of increased stability of PDCD4 protein as well as increased activity of PRMT5 toward PDCD4. During nutrient deprivation, levels of methylated PDCD4 promote cell viability, which is dependent on an enhanced interaction with eIF4A. Upon recovery from nutrient deprivation, levels of methylated PDCD4 are regulated by phosphorylation, which controls both the localization and stability of methylated PDCD4. This study reveals that, in response to particular environmental cues, the role of PDCD4 is up-regulated and is advantageous for cell viability. These findings suggest that the methylated form of PDCD4 promotes tumor viability during nutrient deprivation, ultimately allowing the tumor to grow more aggressively.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Arginina/genética , Arginina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Humanos , Metilación , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Fosforilación/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Regulación hacia Arriba/genética
16.
J Neurosci ; 34(6): 2389-401, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501377

RESUMEN

The corpus callosum (CC) connects the left and right cerebral hemispheres in mammals and its development requires intercellular communication at the telencephalic midline mediated by signaling proteins. Heparan sulfate (HS) is a sulfated polysaccharide that decorates cell surface and extracellular matrix proteins and regulates the biological activity of numerous signaling proteins via sugar-protein interactions. HS is subject to regulated enzymatic sulfation and desulfation and an attractive, although not proven, hypothesis is that the biological activity of HS is regulated by a sugar sulfate code. Mutant mouse embryos lacking the heparan sulfotransferases Hs2st or Hs6st1 have severe CC phenotypes and form Probst bundles of noncrossing axons flanking large tangles of midline glial processes. Here, we identify a precocious accumulation of Sox9-expressing glial cells in the indusium griseum region and a corresponding depletion at the glial wedge associated with the formation of Probst bundles along the rostrocaudal axis in both mutants. Molecularly, we found a surprising hyperactivation of Erk signaling in Hs2st(-/-) (2-fold) and Hs6st1(-/-) (6-fold) embryonic telencephalon that was most striking at the midline, where Erk signaling is lowest in wild-types, and a 2-fold increase in Fgf8 protein levels in Hs6st1(-/-) embryos that could underpin Erk hyperactivation and excessive glial movement to the indusium griseum. The tightly linked Hs6st1(-/-) CC glial and axonal phenotypes can be rescued by genetic or pharmacological suppression of Fgf8/Erk axis components. Overall, our data fit a model in which Hs2st and Hs6st1 normally generate conditions conducive to CC development by generating an HS-containing environment that keeps Erk signaling in check.


Asunto(s)
Cuerpo Calloso/enzimología , Cuerpo Calloso/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas/fisiología , Sulfotransferasas/deficiencia , Animales , Células COS , Chlorocebus aethiops , Femenino , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Embarazo
17.
J Biophotonics ; 7(1-2): 29-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23788459

RESUMEN

We present a stimulated emission depletion (STED) microscope that provides 3-D super resolution by simultaneous depletion using beams with both a helical phase profile for enhanced lateral resolution and an annular phase profile to enhance axial resolution. The 3-D depletion point spread function is realised using a single spatial light modulator that can also be programmed to compensate for aberrations in the microscope and the sample. We apply it to demonstrate the first 3-D super-resolved imaging of an immunological synapse between a Natural Killer cell and its target cell.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía/métodos , Artefactos , Línea Celular , Células Asesinas Naturales/citología , Microesferas , Nanodiamantes/química
18.
Opt Lett ; 38(7): 1043-5, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23546237

RESUMEN

We present a method for arbitrary control of the polarization of a light beam. Our method uses two holograms on a binary ferroelectric liquid crystal spatial light modulator (FLCSLM), and so has the potential to allow polarization state switching at kilohertz rates. Unlike previous methods that achieve polarization control using FLCSLMs, our method is common path and requires only the simplest optical components. For this reason, the method is very easy to setup, align, and maintain. In addition, it has the ability to modulate unpolarized input light. We demonstrate the formation of radially, azimuthally, and circularly polarized beams by imaging their focal spots formed at low numerical aperture.

19.
Cell Biol Int ; 36(7): 643-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22681391

RESUMEN

Recent investigations give reason to question anew the historical status of the 'cell theory' as the ultimate driving force in the development of our understanding of life's processes at the most fundamental level. A revisitation of critical research papers and commentaries from the 19th Century shows that the disregarded (and historically maligned) 'protoplasmic theory of life' played a more deterministic role in the early advancement of knowledge on cell structure and function.


Asunto(s)
Biología Celular/historia , Citoplasma/química , Historia del Siglo XIX , Modelos Moleculares
20.
Artículo en Inglés | MEDLINE | ID: mdl-22595823

RESUMEN

The brine shrimp Artemia is a well known stress tolerant invertebrate found on most continents. Under certain conditions females produce cysts (encysted gastrulae) that enter diapause, a state of obligate dormancy. During developmental formation of diapause embryos several different types of stress proteins accumulate in large amounts, including the late embryogenesis abundant (LEA) proteins. In this study we used a combination of heterologous group 3 LEA antibodies to demonstrate that the heat-soluble proteome of the cysts contains up to 12 distinct putative group 3 LEA proteins that complement the group 1 LEA proteins found previously. Most antibody-positive, heat-soluble proteins were larger than 50 kDa although antibody positive proteins of 20-38 kDa were also detected. Both nuclei and mitochondria had distinct complements of the putative group 3 LEA proteins. A few small group 3 LEA proteins were induced by cycles of hydration-dehydration along with one protein of about 62 kDa. The expression of group 3 LEA proteins, unlike members of group 1, was not restricted to encysted diapause embryos. Three to five putative group 3 LEA proteins were expressed in gravid females and in larvae. Cysts of different species from various geographic locations had distinct complements of group 3 LEA proteins suggesting rapid evolution of the LEA proteins or differences in the type of group 3 Lea genes expressed. Our results demonstrate the potential importance of group 3 LEA proteins in embryos and other life cycle stages of this animal extremophile.


Asunto(s)
Artemia/embriología , Artemia/metabolismo , Desarrollo Embrionario , Calor , Proteoma/metabolismo , Animales , Artemia/genética , Western Blotting , Desecación , Electroforesis en Gel de Poliacrilamida , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Geografía , Orgánulos/metabolismo , Proteoma/genética , Solubilidad , Especificidad de la Especie , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA