Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14635, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918448

RESUMEN

In hyperarid environments, vegetation is highly fragmented, with plant populations exhibiting non-random biphasic structures where regions of high biomass density are separated by bare soil. In the Atacama Desert of northern Chile, rainfall is virtually nonexistent, but fog pushed in from the interior sustains patches of vegetation in a barren environment. Tillandsia landbeckii, a plant with no functional roots, survives entirely on fog corridors as a water source. Their origin is attributed to interaction feedback among the ecosystem agents, which have different spatial scales, ultimately generating banded patterns as a self-organising response to resource scarcity. The interaction feedback between the plants can be nonreciprocal due to the fact that the fog flows in a well-defined direction. Using remote sensing analysis and mathematical modelling, we characterise the orientation angle of banded vegetation patterns with respect to fog direction and topographic slope gradient. We show that banded vegetation patterns can be either oblique or horizontal to the fog flow rather than topography. The initial and boundary conditions determine the type of the pattern. The bifurcation diagram for both patterns is established. The theoretical predictions are in agreement with observations from remote sensing image analysis.

2.
Proc Natl Acad Sci U S A ; 120(15): e2221000120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37027428

RESUMEN

Spatial branching processes are ubiquitous in nature, yet the mechanisms that drive their growth may vary significantly from one system to another. In soft matter physics, chiral nematic liquid crystals provide a controlled setting to study the emergence and growth dynamic of disordered branching patterns. Via an appropriate forcing, a cholesteric phase may nucleate in a chiral nematic liquid crystal, which self-organizes into an extended branching pattern. It is known that branching events take place when the rounded tips of cholesteric fingers swell, become unstable, and split into two new cholesteric tips. The origin of this interfacial instability and the mechanisms that drive the large-scale spatial organization of these cholesteric patterns remain unclear. In this work, we investigate experimentally the spatial and temporal organization of thermally driven branching patterns in chiral nematic liquid crystal cells. We describe the observations through a mean-field model and find that chirality is responsible for the creation of fingers, regulates their interactions, and controls the tip-splitting process. Furthermore, we show that the complex dynamics of the cholesteric pattern behaves as a probabilistic process of branching and inhibition of chiral tips that drives the large-scale topological organization. Our theoretical findings are in good agreement with the experimental observations.

3.
Phys Rev E ; 105(5-1): 054701, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706248

RESUMEN

Systems with multistability are characterized by exhibiting complex nonlinear waves between equilibria. Experimentally, near the smectic-A to chiral nematic transition in a liquid crystal mixture cell with planar anchoring, we observe finger fronts emerge in the smectic-A phase when applying an electric field, a reorientation transition. Finger fronts propagate in the direction orthogonal to the anchoring. Colorimetry characterization allows us to describe the molecular reorientation transition and front dynamics. We reveal that the reorientation transition is of the first-order type and determine their critical points. The front speed is determined as a function of the applied voltage. Theoretically, based on a prototype model of liquid crystal transitions, we qualitatively describe the experimental observations. We have analytically determined the bifurcation diagram and the propagation speeds of finger fronts, finding a fair agreement with the experimental observations.

4.
Phys Rev E ; 104(2): L022203, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525661

RESUMEN

We consider a two-dimensional array of heterogeneous nonlocally coupled phase oscillators on a flat torus and study the bound states of two counter-rotating spiral chimeras, shortly two-core spiral chimeras, observed in this system. In contrast to other known spiral chimeras with motionless incoherent cores, the two-core spiral chimeras typically show a drift motion. Due to this drift, their incoherent cores become spatially modulated and develop specific fingerprint patterns of varying synchrony levels. In the continuum limit of infinitely many oscillators, the two-core spiral chimeras can be studied using the Ott-Antonsen equation. Numerical analysis of this equation allows us to reveal the stability region of different spiral chimeras, which we group into three main classes-symmetric, asymmetric, and meandering spiral chimeras.

5.
Chaos ; 30(11): 110401, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33261348

RESUMEN

This Focus Issue on instabilities and nonequilibrium structures includes invited contributions from leading researchers across many different fields. The issue was inspired in part by the "VII Instabilities and Nonequilibrium Structures 2019" conference that took place at the Pontifica Universidad Católica de Valparaiso, Chile in December 2019. The conference, which is devoted to nonlinear science, is one of the oldest conferences in South America (since December 1985). This session has an exceptional character since it coincides with the 80th anniversary of Professor Enrique Tirapegui. We take this opportunity to highlight Tirapegui's groundbreaking contributions in the field of random perturbations experienced by macroscopic systems and in the formation of spatiotemporal structures in such systems operating far from thermodynamic equilibrium. This issue addresses a cross-disciplinary area of research as can be witnessed by the diversity of systems considered from inert matter such as photonics, chemistry, and fluid dynamics, to biology.


Asunto(s)
Termodinámica , Chile
6.
Sci Rep ; 10(1): 19324, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168934

RESUMEN

Matter under different equilibrium conditions of pressure and temperature exhibits different states such as solid, liquid, gas, and plasma. Exotic states of matter, such as Bose-Einstein condensates, superfluidity, chiral magnets, superconductivity, and liquid crystalline blue phases are observed in thermodynamic equilibrium. Rather than being a result of an aggregation of matter, their emergence is due to a change of a topological state of the system. These topological states can persist out of thermodynamics equilibrium. Here we investigate topological states of matter in a system with injection and dissipation of energy by means of oscillatory forcing. In an experiment involving a liquid crystal cell under the influence of a low-frequency oscillatory electric field, we observe a transition from a non-vortex state to a state in which vortices persist, topological transition. Depending on the period and the type of the forcing, the vortices self-organise, forming square lattices, glassy states, and disordered vortex structures. The bifurcation diagram is characterised experimentally. A continuous topological transition is observed for the sawtooth and square forcings. The scenario changes dramatically for sinusoidal forcing where the topological transition is discontinuous, which is accompanied by serial transitions between square and glassy vortex lattices. Based on a stochastic amplitude equation, we recognise the origin of the transition as the balance between stochastic creation and deterministic annihilation of vortices. Numerical simulations show topological transitions and the emergence of square vortex lattice. Our results show that the matter maintained out of equilibrium by means of the temporal modulation of parameters can exhibit exotic states.

7.
Phys Rev E ; 101(6-1): 062704, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688617

RESUMEN

Electrically driven nematic liquid crystals layers are ideal contexts for studying the interactions of local topological defects, umbilical defects. In homogeneous samples the number of defects is expected to decrease inversely proportional to time as a result of defect-pair interaction law, so-called coarsening process. Experimentally, we characterize the coarsening dynamics in samples containing glass beads as spacers and show that the inclusion of such imperfections changes the exponent of the coarsening law. Moreover, we demonstrate that beads that are slightly deformed alter the surrounding molecular distribution and attract vortices of both topological charges, thus, presenting a mainly quadrupolar behavior. Theoretically, based on a model of vortices diluted in a dipolar medium, a 2/3 exponent is inferred, which is consistent with the experimental observations.

8.
Phys Rev E ; 101(5-1): 052209, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575288

RESUMEN

Nonequilibrium systems exhibit particle-type solutions. Oscillons are one of the best-known localized states of systems with time-dependent forcing or parametrically driven systems. We investigate the transition from nonradiative to radiative oscillons in the parametrically driven sine-Gordon model in two spatial dimensions. The bifurcation takes place when the strength of the forcing (frequency) increases (decreases) above a certain threshold. As a result of this transition, the oscillon emits radially symmetric evanescent waves. Numerically, we provide the phase diagram and show the supercritical nature of this transition. For small oscillations, based on the amplitude equation approach, the sine-Gordon equation with time-dependent forcing is transformed into the parametrically driven damped nonlinear Schrödinger model in two spatial dimensions. This amplitude equation exhibits a transition between nonradiative to radiative localized structures, consistently. Both models show quite good agreement.

9.
Phys Rev E ; 101(4-1): 042212, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422835

RESUMEN

Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter structures are found to be more fragile than longer ones, and their stability region can be displaced outside the pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the destruction of the structure or to its gradual growth.

10.
Sci Rep ; 9(1): 15096, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641144

RESUMEN

Coexistence of states is an indispensable feature in the observation of domain walls, interfaces, shock waves or fronts in macroscopic systems. The propagation of these nonlinear waves depends on the relative stability of the connected equilibria. In particular, one expects a stable equilibrium to invade an unstable one, such as occur in combustion, in the spread of permanent contagious diseases, or in the freezing of supercooled water. Here, we show that an unstable state generically can invade a locally stable one in the context of the pattern forming systems. The origin of this phenomenon is related to the lower energy unstable state invading the locally stable but higher energy state. Based on a one-dimensional model we reveal the necessary features to observe this phenomenon. This scenario is fulfilled in the case of a first order spatial instability. A photo-isomerization experiment of a dye-dopant nematic liquid crystal, allow us to observe the front propagation from an unstable state.

11.
Phys Rev E ; 99(6-1): 062226, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330663

RESUMEN

Driven dissipative many-body systems are described by differential equations for macroscopic variables which include fluctuations that account for ignored microscopic variables. Here, we investigate the effect of deterministic fluctuations, drawn from a system in a state of phase turbulence, on front dynamics. We show that despite these fluctuations a front may remain pinned, in contrast to fronts in systems with Gaussian white noise fluctuations, and explore the pinning-depinning transition. In the deterministic case, this transition is found to be robust but its location in parameter space is complex, generating a fractal-like structure. We describe this transition by deriving an equation for the front position, which takes the form of an overdamped system with a ratchet potential and chaotic forcing; this equation can, in turn, be transformed into a linear parametrically driven oscillator with a chaotically oscillating frequency. The resulting description provides an unambiguous characterization of the pinning-depinning transition in parameter space. A similar calculation for noise-driven front propagation shows that the pinning-depinning transition is washed out.

12.
Sci Rep ; 8(1): 12867, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150701

RESUMEN

Optical pattern formation is usually due either to the combination of diffraction and nonlinearity in a Kerr medium or to the temporal modulation of light in a photosensitive chemical reaction. Here, we show a different mechanism by which light spontaneously induces stripe domains between nematic states in a twisted nematic liquid crystal layer doped with azo-dyes. Thanks to the photoisomerization process of the dopants, light in the absorption band of the dopants creates spontaneous patterns without the need of temporal modulation, diffraction, Kerr or other optical nonlinearity, but based on the different scales for dopant transport processes and nematic order parameter, which identifies a genuine Turing mechanism for this instability. Theoretically, the emergence of the stripe patterns is described on the basis of a model for the dopant concentration coupled with the nematic order parameter.

13.
Sci Rep ; 6: 33703, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650430

RESUMEN

Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora-and fauna within-or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

14.
Phys Rev Lett ; 117(5): 053903, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517773

RESUMEN

A Berry phase is revealed for circularly polarized light when it is Bragg reflected by a chiral liquid-crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.

15.
Artículo en Inglés | MEDLINE | ID: mdl-26565312

RESUMEN

Stationary two-dimensional localized structures have been observed in a wide variety of dissipative systems. The existence, stability properties, dynamical evolution, and bifurcation diagram of an azimuthal symmetry breaking, rodlike localized structure in the isotropic prototype model of pattern formation, the Swift-Hohenberg model, is studied. These rodlike structures persist under the presence of nongradient perturbations. Interaction properties of the rodlike structures are studied. This allows us to envisage the possibility of different crystal-like configurations.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26066109

RESUMEN

Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system, a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.

17.
Artículo en Inglés | MEDLINE | ID: mdl-25871187

RESUMEN

We investigate the effects of inherent fluctuations and system size in the dynamics of domain between uniform symmetric states. In the case of monotonous kinks, this dynamics is characterized by exhibiting nonsymmetric random walks, being attracted to the system borders. For nonmonotonous interface, the dynamics is replaced by a hopping dynamic. Based on bistable universal models, we characterize the origin of these unexpected dynamics through use of the stochastic kinematic laws for the interface position and the survival probability. Numerical simulations show a quite good agreement with the theoretical predictions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-25353546

RESUMEN

Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.

19.
Artículo en Inglés | MEDLINE | ID: mdl-25122324

RESUMEN

The existence, stability properties, and bifurcation diagram of the nematic umbilical defects is studied. Close to the Fréedericksz transition of nematic liquid crystals with negative anisotropic dielectric constant and homeotropic anchoring, an anisotropic Ginzburg-Landau equation for the amplitude of the tilt of the director away from the vertical axis is derived by taking the three-dimensional (3D) to 2D limit of the Frank-Oseen model. The anisotropic Ginzburg-Landau equation allows us to reveal the mechanism of symmetry breaking of nematic umbilical defects. The positive defect is fully characterized as a function of the anisotropy, while the negative defect is characterized perturbatively. Numerical simulations show quite good agreement with the analytical results.


Asunto(s)
Cristales Líquidos , Anisotropía , Impedancia Eléctrica
20.
Artículo en Inglés | MEDLINE | ID: mdl-23767606

RESUMEN

Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in one and two dimensions and develop an analytical description for its structure and dynamics. Numerical simulations are consistent with our analytical results, showing good agreement. A numerical exploration conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.


Asunto(s)
Campos Electromagnéticos , Modelos Estadísticos , Dinámicas no Lineales , Teoría Cuántica , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA