Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Proteome Res ; 20(7): 3414-3427, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34087075

RESUMEN

The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Proteínas de Ciclo Celular/genética , Humanos , Cinetocoros , Proteínas Serina-Treonina Quinasas/genética , Proteómica
2.
J Cell Biol ; 214(2): 143-53, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27432896

RESUMEN

Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.


Asunto(s)
Centrosoma/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Mitosis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Daño del ADN , Técnicas de Inactivación de Genes , Humanos , Metafase , Estabilidad Proteica
3.
J Cell Biol ; 210(1): 63-77, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26150389

RESUMEN

Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure.


Asunto(s)
Centriolos/genética , Inestabilidad Genómica , Proteína p53 Supresora de Tumor/fisiología , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Centriolos/fisiología , Segregación Cromosómica , Humanos , Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/fisiología , Transporte de Proteínas
4.
J Cell Biol ; 209(6): 863-78, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26101219

RESUMEN

Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle-regulated accumulation of STIL.


Asunto(s)
Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Anticuerpos/inmunología , Sitios de Unión/genética , Sitios de Unión/inmunología , Puntos de Control del Ciclo Celular , División Celular , Línea Celular , Activación Enzimática , Células HEK293 , Humanos , Indazoles/farmacología , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Edición de ARN , Interferencia de ARN , ARN Interferente Pequeño
5.
Proc Natl Acad Sci U S A ; 110(8): E736-45, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382207

RESUMEN

Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Mutación , Empalme del ARN , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Ubiquitinación
6.
Nat Neurosci ; 15(11): 1488-97, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23023293

RESUMEN

FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Inmunoprecipitación , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Proteínas de Neurofilamentos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Precursores del ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína FUS de Unión a ARN/deficiencia , Proteína FUS de Unión a ARN/genética , Canales de Potasio Shal/metabolismo , Médula Espinal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...