Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 31(23): 2557-2569, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32903148

RESUMEN

Epithelia can eliminate apoptotic cells by apical extrusion. This is a complex morphogenetic event where expulsion of the apoptotic cell is accompanied by rearrangement of its immediate neighbors to form a rosette. A key mechanism for extrusion is constriction of an actomyosin network that neighbor cells form at their interface with the apoptotic cell. Here we report a complementary process of cytoskeletal relaxation that occurs when cortical contractility is down-regulated at the junctions between those neighbor cells themselves. This reflects a mechanosensitive Src family kinase (SFK) signaling pathway that is activated in neighbor cells when the apoptotic cell relaxes shortly after injury. Inhibiting SFK signaling blocks both the expulsion of apoptotic cells and the rosette formation among their neighbor cells. This reveals the complex pattern of spatially distinct contraction and relaxation that must be established in the neighboring epithelium for apoptotic cells to be extruded.


Asunto(s)
Uniones Adherentes/metabolismo , Apoptosis/fisiología , Familia-src Quinasas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/fisiología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Epitelio/fisiología , Humanos , Células MCF-7 , Morfogénesis , Transducción de Señal , Familia-src Quinasas/fisiología
2.
Magn Reson Chem ; 58(11): 1130-1138, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31880813

RESUMEN

The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13 C, 13 C{1 H}, 1 H─13 C, 13 C{14 N}, and 15 N solid-state nuclear magnetic resonance (NMR) experiments. 13 C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15 N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13 C NMR peaks, including an unusual ═CH signal at 84 ppm (1 H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15 N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1 H─13 C HETCOR spectrum with brief 1 H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13 C and 15 N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13 C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.

3.
Phys Biol ; 15(2): 024001, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29091048

RESUMEN

Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.


Asunto(s)
Adhesión Celular/fisiología , Inhibición de Contacto , Células Epiteliales/fisiología , Epitelio/fisiología , Uniones Intercelulares/fisiología , Locomoción , Animales , Fenómenos Biomecánicos , Células Epiteliales/citología , Humanos , Modelos Biológicos
4.
Mol Biol Cell ; 27(22): 3436-3448, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605701

RESUMEN

We used a computational approach to analyze the biomechanics of epithelial cell aggregates-islands, stripes, or entire monolayers-that combines both vertex and contact-inhibition-of-locomotion models to include cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high-order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of basal protrusions, traction forces, and apical aspect ratios that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions and apical stress is not homogeneous across the island. Instead, these parameters are higher at the island center and scale up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Without formally being a three-dimensional model, our approach has the minimal elements necessary to reproduce the distribution of cellular forces and mechanical cross-talk, as well as the distribution of principal stress in cells within epithelial cell aggregates. By making experimentally testable predictions, our approach can aid in mechanical analysis of epithelial tissues, especially when local changes in cell-cell and/or cell-substrate adhesion drive collective cell behavior.


Asunto(s)
Inhibición de Contacto/fisiología , Células Epiteliales/fisiología , Animales , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/fisiología , Simulación por Computador/estadística & datos numéricos , Células Epiteliales/citología , Epitelio , Humanos , Uniones Intercelulares , Locomoción , Modelos Biológicos , Receptor Cross-Talk
5.
Phys Biol ; 10(4): 046002, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23752100

RESUMEN

When motile cells come into contact with one another their motion is often considerably altered. In a process termed contact inhibition of locomotion (CIL) cells reshape and redirect their movement as a result of cell-cell contact. Here we describe a mathematical model that demonstrates that CIL alone is sufficient to produce coherent, collective cell migration. Our model illustrates a possible mechanism behind collective cell migration that is observed, for example, in neural crest cells during development, and in metastasizing cancer cells. We analyse the effects of varying cell density and shape on the alignment patterns produced and the transition to coherent motion. Finally, we demonstrate that this process may have important functional consequences by enhancing the accuracy and robustness of the chemotactic response, and factors such as cell shape and cell density are more significant determinants of migration accuracy than the individual capacity to detect environmental gradients.


Asunto(s)
Biofisica/métodos , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Biología Computacional/métodos , Modelos Biológicos , Inhibición de Migración Celular/fisiología , Forma de la Célula/fisiología , Quimiotaxis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...