Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 28(9): 1085-1104, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31559558

RESUMEN

Many species of marine life in southwestern Florida, including sea turtles, are impacted by blooms of the toxic dinoflagellate, Karenia brevis. Sublethal exposure to toxins produced by K. brevis has been shown to impact sea turtle health. Since all sea turtles in the Gulf of Mexico have protected status, a freshwater turtle, Trachemys scripta, was used as a model for immune system effects following experimental exposure to a predominant brevetoxin congener in K. brevis blooms, PbTx-3. Exposure to PbTx-3 was oral or intratracheal and health effects were assessed using a suite of immune function parameters: innate immune function (phagocytosis, plasma lysozyme activity), adaptive immune function (lymphocyte proliferation), and measures of oxidative stress (superoxide dismutase (SOD) and glutathione-S-transferase (GST) activity in plasma). Inflammation was also measured using plasma protein electrophoresis. In addition, differential expression of genes in peripheral blood leukocytes was determined using suppression subtractive hybridization followed by real-time PCR of specific genes. The primary immune effects of sublethal brevetoxin exposure in T. scripta following PbTx-3 administration, appear to be an increase in oxidative stress, a decrease in lysozyme activity, and modulation of immune function through lymphocyte proliferation responses. Plasma protein electrophoresis showed a decreased A:G ratio which may indicate potential inflammation. Genes coding for oxidative stress, such as thioredoxin and GST, were upregulated in exposed animals. That sublethal brevetoxin exposures impact immune function components suggests potential health implications for sea turtles naturally exposed to toxins. Knowledge of physiological stressors induced by brevetoxins may contribute to the ultimate goal of developing directed treatment strategies in exposed animals for reduced mortality resulting from red tide toxin exposure in sea turtles.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Toxinas Marinas/toxicidad , Tortugas/fisiología , Animales , Toxinas Marinas/química , Oxocinas/química , Pruebas de Toxicidad
2.
J Drug Deliv ; 2019: 1957360, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31360551

RESUMEN

Despite recent advances, the drug development process continues to face significant challenges to efficiently improve the poor solubility of active pharmaceutical ingredients (API) in aqueous media or to improve the bioavailability of lipid-based formulations. The inherent high intra- and interindividual variability of absorption of oral lipophilic drug leads to inconsistent and unpredictable bioavailability and magnitude of the therapeutic effect. For this reason, the development of lipid-based drugs remains a challenging endeavour with a high risk of failure. Therefore, effective strategies to assure a predictable, consistent, and reproducible bioavailability and therapeutic effect for lipid-based medications are needed. Different solutions to address this problem have been broadly studied, including the approaches of particle size reduction, prodrugs, salt forms, cocrystals, solid amorphous forms, cyclodextrin clathrates, and lipid-based drug delivery systems such as self-emulsifying systems and liposomes. Here, we provide a brief description of the current strategies commonly employed to increase the bioavailability of lipophilic drugs and present Advanced Lipid Technologies® (ALT®), a combination of different surfactants that has been demonstrated to improve the absorption of omega-3 fatty acids under various physiological and pathological states.

3.
J Zoo Wildl Med ; 50(1): 33-44, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31120660

RESUMEN

Harmful algal blooms (HABs) occur when excess nutrients allow dinoflagellates to reproduce in large numbers. Marine animals are affected by blooms when algal toxins are ingested or inhaled. In the Gulf of Mexico, near annual blooms of Karenia brevis release a suite of compounds (brevetoxins) that cause sea turtle morbidity and mortality. The primary treatment at rehabilitation facilities for brevetoxin-exposed sea turtles is supportive care, and it has been difficult to design alternative treatment strategies without an understanding of the effects of brevetoxins in turtles in vivo. Previous studies using the freshwater turtle as a model species showed that brevetoxin-3 impacts the nervous and muscular systems, and is detoxified and eliminated primarily through the liver, bile, and feces. In this study, freshwater turtles (Trachemys scripta) were exposed to brevetoxin (PbTx-3) intratracheally at doses causing clear systemic effects, and treatment strategies aimed at reducing the postexposure neurological and muscular deficits were tested. Brevetoxin-exposed T. scripta displayed the same behaviors as animals admitted to rehabilitation centers for toxin exposure, ranging from muscle twitching and incoordination to paralysis and unresponsiveness. Two treatment regimes were tested: cholestyramine, a bile acid sequestrant; and an intravenous lipid emulsion treatment (Intralipidt) that provides an expanded circulating lipid volume. Cholestyramine was administered orally 1 hr and 6 hr post PbTx-3 exposure, but this regime failed to increase toxin clearance. Animals treated with Intralipid (100 mg/kg) 30 min after PbTx-3 exposure had greatly reduced symptoms of brevetoxicosis within the first 2 hr compared with animals that did not receive the treatment, and appeared fully recovered within 24 hr compared with toxin-exposed control animals that did not receive Intralipid. The results strongly suggest that Intralipid treatment for lipophilic toxins such as PbTx-3 has the potential to reduce morbidity and mortality in HAB-exposed sea turtles.


Asunto(s)
Emulsiones Grasas Intravenosas/uso terapéutico , Toxinas Marinas/toxicidad , Neurotoxinas/toxicidad , Oxocinas/toxicidad , Intoxicación/veterinaria , Sustancias Protectoras/uso terapéutico , Tortugas/fisiología , Animales , Resina de Colestiramina/uso terapéutico , Intoxicación/tratamiento farmacológico
4.
Aquat Toxicol ; 187: 29-37, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28363127

RESUMEN

Harmful algal blooms (HABs) occur nearly annually off the west coast of Florida and can impact both humans and wildlife, resulting in morbidity and increased mortality of marine animals including sea turtles. The key organism in Florida red tides is the dinoflagellate Karenia brevis that produces a suite of potent neurotoxins referred to as the brevetoxins (PbTx). Despite recent mortality events and rehabilitation efforts, still little is known about how the toxin directly impacts sea turtles, as they are not amenable to experimentation and what is known about toxin levels and distribution comes primarily from post-mortem data. In this study, we utilized the freshwater turtle Trachemys scripta and the diamondback terrapin, Malaclemys terrapin as model organisms to determine the distribution, clearance, and routes of excretion of the most common form of the toxin, brevetoxin-3, in turtles. Turtles were administered toxin via esophageal tube to mimic ingestion (33.48µg/kg PbTx-3, 3×/week for two weeks for a total of 7 doses) or by intratracheal instillation (10.53µg/kg, 3×/week for four weeks for a total of 12 doses) to mimic inhalation. Both oral and intratracheal administration of the toxin produced a suite of behavioral responses symptomatic of brevetoxicosis. The toxin distributed to all organ systems within 1h of administration but was rapidly cleared out over 24-48h, corresponding to a decline in clinical symptoms. Excretion appears to be primarily through conjugation to bile salts. Histopathological study revealed that the frequency of lesions varied within experimental groups with some turtles having no significant lesions at all, while similar lesions were found in a low number of control turtles suggesting another common factor(s) could be responsible. The overall goal of this research is better understand the impacts of brevetoxin on turtles in order to develop better treatment protocols for sea turtles exposed to HABs.


Asunto(s)
Toxinas Marinas/farmacocinética , Neurotoxinas/farmacocinética , Oxocinas/farmacocinética , Tortugas/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Dinoflagelados/metabolismo , Femenino , Florida , Agua Dulce/química , Floraciones de Algas Nocivas , Humanos , Exposición por Inhalación , Masculino , Toxinas Marinas/toxicidad , Tasa de Depuración Metabólica , Modelos Biológicos , Neurotoxinas/toxicidad , Especificidad de Órganos , Oxocinas/toxicidad , Distribución Tisular , Contaminantes Químicos del Agua/toxicidad
5.
Aquat Toxicol ; 180: 115-122, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27697698

RESUMEN

Harmful algal blooms are increasing in frequency and extent worldwide and occur nearly annually off the west coast of Florida where they affect both humans and wildlife. The dinoflagellate Karenia brevis is a key organism in Florida red tides that produces a suite of potent neurotoxins collectively referred to as the brevetoxins (PbTx). Brevetoxins bind to and open voltage gated sodium channels (VGSC), increasing cell permeability in excitable cells and depolarizing nerve and muscle tissue. Exposed animals may thus show muscular and neurological symptoms including head bobbing, muscle twitching, paralysis, and coma; large HABs can result in significant morbidity and mortality of marine life, including fish, birds, marine mammals, and sea turtles. Brevetoxicosis however is difficult to treat in endangered sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. In this study we used the freshwater turtle Trachemys scripta as a model organism to investigate the effects of the specific brevetoxin PbTx-3 in the turtle brain. Primary turtle neuronal cell cultures were exposed to a range of PbTx-3 concentrations to determine excitotoxicity. Agonists and antagonists of voltage-gated sodium channels and downstream targets were utilized to confirm the toxin's mode of action. We found that turtle neurons are highly resistant to PbTx-3; while cell viability decreased in a dose dependent manner across PbTx-3 concentrations of 100-2000nM, the EC50 was significantly higher than has been reported in mammalian neurons. PbTx-3 exposure resulted in significant Ca2+ influx, which could be fully abrogated by the VGSC antagonist tetrodotoxin, NMDA receptor blocker MK-801, and tetanus toxin, indicating that the mode of action in turtle neurons is the same as in mammalian cells. As both turtle and mammalian VGSCs have a high affinity for PbTx-3, we suggest that the high resistance of the turtle neuron to PbTx-3 may be related to its ability to withstand anoxic depolarization. The ultimate goal of this work is to design treatment protocols for sea turtles exposed to red tides worldwide.


Asunto(s)
Toxinas Marinas/toxicidad , Neuronas/efectos de los fármacos , Oxocinas/toxicidad , Tortugas/fisiología , Contaminantes del Agua/toxicidad , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacología , Exocitosis/efectos de los fármacos , Femenino , Florida , Floraciones de Algas Nocivas , Humanos , Hipoxia , Neuronas/citología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...