Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540800

RESUMEN

This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab. Differential expression analysis was used to identify the most enriched pathways and in predictive models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in inflammatory activity. We found transcripts and proteins robustly differentially expressed between baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD, APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A model including clinical and gene expression variables should also be considered.


Asunto(s)
Antirreumáticos , Espondiloartritis Axial , Espondilitis Anquilosante , Humanos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Adalimumab/uso terapéutico , Antirreumáticos/uso terapéutico , Factor de Necrosis Tumoral alfa , Resultado del Tratamiento
2.
Cell Tissue Res ; 394(2): 293-308, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37606764

RESUMEN

The potential to regenerate a damaged body part is expressed to a different extent in animals. Echinoderms, in particular starfish, are known for their outstanding regenerating potential. Differently, humans have restricted abilities to restore organ systems being dependent on limited sources of stem cells. In particular, the potential to regenerate the central nervous system is extremely limited, explaining the lack of natural mechanisms that could overcome the development of neurodegenerative diseases and the occurrence of trauma. Therefore, understanding the molecular and cellular mechanisms of regeneration in starfish could help the development of new therapeutic approaches in humans. In this study, we tackle the problem of starfish central nervous system regeneration by examining the external and internal anatomical and behavioral traits, the dynamics of coelomocyte populations, and neuronal tissue architecture after radial nerve cord (RNC) partial ablation. We noticed that the removal of part of RNC generated several anatomic anomalies and induced behavioral modifications (injured arm could not be used anymore to lead the starfish movement). Those alterations seem to be related to defense mechanisms and protection of the wound. In particular, histology showed that tissue patterns during regeneration resemble those described in holothurians and in starfish arm tip regeneration. Flow cytometry coupled with imaging flow cytometry unveiled a new coelomocyte population during the late phase of the regeneration process. Morphotypes of these and previously characterized coelomocyte populations were described based on IFC data. Further studies of this new coelomocyte population might provide insights on their involvement in radial nerve cord regeneration.


Asunto(s)
Nervio Radial , Pepinos de Mar , Animales , Humanos , Nervio Radial/fisiología , Estrellas de Mar/fisiología , Regeneración Nerviosa/fisiología
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430211

RESUMEN

Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups­healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.


Asunto(s)
Tuberculosis Latente , Tuberculosis , Humanos , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tuberculosis/diagnóstico , Tuberculosis Latente/diagnóstico , Biomarcadores
4.
Front Microbiol ; 13: 1000737, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246270

RESUMEN

Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and 1H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections.

5.
Methods Mol Biol ; 2450: 583-597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359330

RESUMEN

Proteomics combined to advanced bioinformatics tools is acquiring a pivotal role in the comprehensive understanding of living organism's biology, in particular for non-model organisms, which includes most marine and aquatic invertebrates. Depicting of protein composition in a whole organ/organism followed by their assembling in functional protein association networks promotes the understanding of key biological processes. Here, we provide a detailed description of the extraction procedure of cell-free coelomic fluid soluble proteins and the characterization of the proteome of the starfish Marthasterias glacialis. Due to coelomic fluid richness in glycoproteins, which complicates protein identification, extracts of soluble proteins are deglycosylated prior to tandem mass spectrometry. This experimental approach is useful at improving knowledge on the coelomic fluid physiological role and deciphering its involvement in regeneration of starfish body parts when comparing different regeneration conditions.


Asunto(s)
Proteoma , Estrellas de Mar , Animales , Proteómica
6.
Front Immunol ; 12: 641664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815394

RESUMEN

Coelomocytes is the generic name for a collection of cellular morphotypes, present in many coelomate animals, and highly variable among echinoderm classes. The roles attributed to the major types of these free circulating cells present in the coelomic fluid of echinoderms include immune response, phagocytic digestion and clotting. Our main aim in this study was to characterize coelomocytes found in the coelomic fluid of Marthasterias glacialis (class Asteroidea) by using a combination of flow cytometry (FC), imaging flow cytometry (IFC) and fluorescence plus transmission electron microscopy (TEM). Two coelomocyte populations (P1 and P2) identified through flow cytometry were subsequently studied in terms of abundance, morphology, ultrastructure, cell viability and cell cycle profiles. Ultrastructurally, P2 diploid cells were present as two main morphotypes, similar to phagocytes and vertebrate thrombocytes, whereas the smaller P1 cellular population was characterized by low mitotic activity, a relatively undifferentiated cytotype and a high nucleus/cytoplasm ratio. In the present study we could not rule out possible similarities between haploid P1 cells and stem-cell types in other animals. Additionally, we report the presence of two other morphotypes in P2 that could only be detected by fluorescence microscopy, as well as a morphotype revealed via combined microscopy/FC. This integrative experimental workflow combined cells physical separation with different microscopic image capture technologies, enabling us to better tackle the characterization of the heterogeneous composition of coelomocytes populations.


Asunto(s)
Líquidos Corporales , Citometría de Flujo , Fagocitos , Estrellas de Mar , Animales , Líquidos Corporales/citología , Líquidos Corporales/inmunología , Fagocitos/citología , Fagocitos/inmunología , Estrellas de Mar/citología , Estrellas de Mar/inmunología
7.
Sci Total Environ ; 771: 144565, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736145

RESUMEN

Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.


Asunto(s)
Ecotoxicología , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Humanos , Invertebrados , Reproducibilidad de los Resultados , Células Madre , Contaminantes Químicos del Agua/toxicidad
8.
J Proteomics ; 152: 48-57, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27989945

RESUMEN

Grapevine downy mildew is an important disease affecting crop production leading to severe yield losses. This study aims to identify the grapevine cultivar-specific adjustments of leaf proteome that allow the discrimination between resistance and susceptibility towards P. viticola (constitutive (0h) and in after inoculation (6, 12 and 24h). Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry. In addition, we analysed ROS production, antioxidant capacity, lipid peroxidation and gene expression. Proteins related to photosynthesis and metabolism allowed the discrimination of resistant and susceptible grapevine cultivars prior to P. viticola inoculation. Following inoculation increase of hydrogen peroxide levels, cellular redox regulation, establishment of ROS signalling and plant cell death seem to be key points differentiating the resistant genotype. Lipid associated signalling events, particularly related to jasmonates appear also to play a major role in the establishment of resistance. The findings from this study contribute to a better understanding of genotype-specific differences that account for a successful establishment of a defence response to the downy mildew pathogen. BIOLOGICAL SIGNIFICANCE: Here, we present for the first time grapevine cultivar-specific adjustments of leaf proteome that allow the discrimination between resistance and susceptibility towards P. viticola (constitutive (0h) and in after inoculation (6, 12 and 24h). We have highlighted that, following inoculation, the major factors differentiating the resistant from the susceptible grapevine cultivars are the establishment of effective ROS signalling together with lipid-associated signalling events, particularly related to jasmonates. It is believed that plants infected with biotrophic pathogens suppress JA-mediated responses, however recent evidences shown that jasmonic acid signalling pathway in grapevine resistance against Plasmopara viticola. Our results corroborate those evidences and highlight the importance of lipid- signalling for an effective resistance response against the downy mildew pathogen.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Peronospora/patogenicidad , Hojas de la Planta/química , Proteoma/análisis , Vitis/microbiología , Ciclopentanos/farmacología , Electroforesis en Gel Bidimensional , Genotipo , Metabolismo de los Lípidos , Oxidación-Reducción , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Transducción de Señal
9.
Mycorrhiza ; 27(2): 109-128, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27714470

RESUMEN

An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.


Asunto(s)
Basidiomycota/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Quercus/metabolismo , Quercus/microbiología , Biomasa , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Metabolismo de los Lípidos/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Fisiológico , Simbiosis
10.
Neurobiol Aging ; 47: 91-101, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27568093

RESUMEN

Transthyretin (TTR) deposition in the peripheral nervous system is the hallmark of familial amyloidotic polyneuropathy (FAP). Currently, liver transplantation is the only available treatment to halt the progression of clinical symptoms; however, due to the limitations of this procedure, development of alternative therapeutic strategies is of utmost importance. In this regard, interference RNA (RNAi) targeting TTR is currently in phase III clinical development. To dissect molecular changes occurring in dorsal root ganglia (DRG) upon RNAi-mediated knockdown of TTR, we treated both chronically and acutely an FAP mouse model, in different stages of disease. Our data show that inhibition of TTR expression by the liver with RNAi reverse TTR deposition in DRG, decrease matrix metalloproteinase-2 (MMP-2) protein levels in plasma, inhibit Mmp-2 gene expression and downregulate MMP-9 activity in DRG, indicating extracellular matrix remodeling. Furthermore, protein levels of MMP-2 were found upregulated in plasma samples from FAP patients indicating that MMP-2 might be a novel potential biomarker for FAP diagnosis. Collectively, our data show that silencing TTR liver synthesis in vivo can modulate TTR-induced pathology in the peripheral nervous system and highlight the potential of MMP-2 as a novel disease biomarker.


Asunto(s)
Neuropatías Amiloides/genética , Neuropatías Amiloides/patología , Técnicas de Silenciamiento del Gen , Prealbúmina/genética , Prealbúmina/metabolismo , Interferencia de ARN , Neuropatías Amiloides/diagnóstico , Neuropatías Amiloides/terapia , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Expresión Génica , Hígado/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Transgénicos , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología
11.
J Proteomics ; 141: 47-56, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27090762

RESUMEN

UNLABELLED: A metal-resistant Rhodotorula mucilaginosa strain was isolated from an industrial wastewater. Effects on reduced/oxidized glutathione (GSSG/GSH), antioxidant enzymes and proteome were assessed on metal challenge (100mg/L). Increased GSH (mM/g) was found with CdCl2 (18.43±3.34), NaAsO2 (14.76±2.14), CuSO4 (14.73±2.49), and Pb(NO3)2 (15.74±5.3) versus control (7.67±0.95). GSH:GSSG ratio decreased with CdCl2, NaAsO2, and Pb(NO3)2 but not with CuSO4 and cysteine-containing protein levels increased with CdCl2 and NaAsO2. NaAsO2 exposure enhanced glutathione transferase activity but this decreased with CdCl2. Both metals significantly increased glutathione reductase and catalase activities. Metabolism-dependent uptake of Cd and As (12-day exposure) of approximately 65mg/g was observed in live cells with greater cell surface interaction for As compared to Cd. A particular role for arsenic oxidase in As resistance was identified. One dimensional electrophoresis revealed higher oxidation of protein thiols in response to NaAsO2 than to CdCl2. Two dimensional electrophoresis showed altered abundance of some proteins on metal treatment. Selected spots were excised for mass spectrometry and seven proteins identified. Under oxidative stress conditions, xylose reductase, putative chitin deacetylase, 20S proteasome subunit, eukaryotic translation elongation factor 2, valine-tRNA ligase and a metabolic enzyme F0F1 ATP synthase alpha subunit were all expressed as well as a unique hypothetical protein. These may comprise a protein expression signature for metal-induced oxidation in this yeast. SIGNIFICANCE: Fungi are of widespread importance in agriculture, biodegradation and often show extensive tolerance to heavy metals. This makes them of interest from the perspective of bioremediation. In this study an environmental isolate of R. mucilaginosa showing extensive tolerance of a panel of heavy metals, in particular cadmium and arsenic, was studied. Several biochemical parameters such as activity of antioxidant enzymes, status of reduced and oxidized glutathione and thiols associated with proteins were all found to be affected by metal exposure. A detailed analysis with arsenic and cadmium pointed to a particular role for arsenic oxidase in arsenic bioaccumulation and tolerance. This is the first time this has been reported in R. mucilaginosa, and suggests that this isolate may have potential in biosorption of these metals in the environment. Proteomic analysis revealed that seven proteins with a variety of roles - ATP synthesis, protein degradation/synthesis, and metabolism of xylose and chitin - were differentially affected by metal exposure in a manner consistent with oxidative stress. These may therefore represent a protein expression signature for exposure to cadmium and arsenic.


Asunto(s)
Arsénico/farmacología , Biodegradación Ambiental , Cadmio/farmacología , Proteómica/métodos , Rhodotorula/química , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Proteínas Fúngicas/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Glutatión Reductasa/efectos de los fármacos , Glutatión Reductasa/metabolismo , Metales Pesados/farmacología , Oxidación-Reducción/efectos de los fármacos , Proteoma , Rhodotorula/efectos de los fármacos , Rhodotorula/metabolismo , Transcriptoma
12.
PLoS One ; 11(2): e0146367, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828937

RESUMEN

Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled "Growth" and the other labeled "Restricted." After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3-10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss.


Asunto(s)
Cruzamiento , Proteínas Musculares/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Ovinos/metabolismo , Pérdida de Peso , Animales , Dieta , Electroforesis en Gel Bidimensional , Insulina/sangre , Leptina/sangre , Ovinos/sangre
13.
Am J Respir Cell Mol Biol ; 55(1): 12-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26681636

RESUMEN

Mechanisms underpinning chronic sustained hypoxia (CH)-induced structural and functional adaptations in respiratory muscles are unclear despite the clinical relevance to respiratory diseases. The objectives of the present study were to thoroughly assess the putative role of CH-induced redox remodeling in murine diaphragm muscle over time and the subsequent effects on metabolic enzyme activities, catabolic signaling and catabolic processes, and diaphragm muscle contractile function. C57Bl6/J mice were exposed to normoxia or normobaric CH (fraction of inspired oxygen = 0.1) for 1, 3, or 6 weeks. A second cohort was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine). After CH exposure, we performed two-dimensional redox proteomics with mass spectrometry, enzyme activity assays, and cell-signaling assays on diaphragm homogenates. We also assessed diaphragm isotonic contractile and endurance properties ex vivo. Global protein redox changes in the diaphragm after CH are indicative of oxidation. Remodeling of proteins key to contractile, metabolic, and homeostatic functions was observed. Several oxidative and glycolytic enzyme activities were decreased by CH. Redox-sensitive chymotrypsin-like proteasome activity of the diaphragm was increased. CH decreased phospho-forkhead box O3a (FOXO3a) and phospho-mammalian target of rapamycin content. Hypoxia-inducible factor-1α and phospho-p38 mitogen-activated protein kinase content was increased in CH diaphragm, and this was attenuated by antioxidant treatment. CH exposure decreased force- and power-generating capacity of the diaphragm, and this was prevented by antioxidant supplementation with N-acetyl cysteine but not tempol. Redox remodeling is pivotal for diaphragm adaptation to CH, affecting metabolic activity, atrophy signaling, and functional performance. Antioxidant supplementation may be useful as an adjunctive therapy in respiratory-related diseases characterized by hypoxic stress.


Asunto(s)
Adaptación Fisiológica , Diafragma/metabolismo , Diafragma/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Animales , Antioxidantes/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular , Oxidación-Reducción , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Carbonilación Proteica , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/metabolismo
14.
PLoS One ; 10(12): e0145328, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26691135

RESUMEN

The obligate intracellular bacterium Ehrlichia ruminantium (ER) causes heartwater, a fatal tick-borne disease in livestock. In the field, ER strains present different levels of virulence, limiting vaccine efficacy, for which the molecular basis remains unknown. Moreover, there are no genetic tools currently available for ER manipulation, thus limiting the knowledge of the genes/proteins that are essential for ER pathogenesis and biology. As such, to identify proteins and/or mechanisms involved in ER virulence, we performed the first exhaustive comparative proteomic analysis between a virulent strain (ERGvir) and its high-passaged attenuated strain (ERGatt). Despite their different behaviors in vivo and in vitro, our results from 1DE-nanoLC-MS/MS showed that ERGvir and ERGatt share 80% of their proteins; this core proteome includes chaperones, proteins involved in metabolism, protein-DNA-RNA biosynthesis and processing, and bacterial effectors. Conventional 2DE revealed that 85% of the identified proteins are proteoforms, suggesting that post-translational modifications (namely glycosylation) are important in ER biology. Strain-specific proteins were also identified: while ERGatt has an increased number and overexpression of proteins involved in cell division, metabolism, transport and protein processing, ERGvir shows an overexpression of proteins and proteoforms (DIGE experiments) involved in pathogenesis such as Lpd, AnkA, VirB9 and B10, providing molecular evidence for its increased virulence in vivo and in vitro. Overall, our work reveals that ERGvir and ERGatt proteomes are streamlined to fulfill their biological function (maximum virulence for ERGvir and replicative capacity for ERGatt), and we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ehrlichia ruminantium , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Proteómica , Factores de Virulencia/metabolismo , Ehrlichia ruminantium/crecimiento & desarrollo , Ehrlichia ruminantium/patogenicidad , Glicosilación
15.
Drug Test Anal ; 7(10): 957-66, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25833337

RESUMEN

Veterinary and human pharmaceuticals are an emerging category of chemical pollutants with potential to cause serious toxicity to non-target organisms. Filter-feeding aquatic organisms such as mussels are especially threatened. In this study, the blue mussel, Mytilus edulis, was exposed to two doses (0.2 mg/L and 1 mg/L) of the anti-inflammatory diclofenac. Effects on the gill, the principal feeding organ of mussels, were investigated. It was noted that, while no effect was evident on gill glutathione transferase or catalase activities, there was a tissue-specific increase in glutathione reductase activity and reduction in total protein thiol groups. Two dimensional electrophoresis was performed and some affected proteins identified by in-gel tryptic digestion and peptide mass fingerprinting. Of these, four unique proteins (caspase 3/7-4, heat-shock cognate protein 70, a predicted enolase-like protein, arginine kinase) were found to be oxidized whilst eight unique proteins (ß-tubulin, actin, isocitrate dehydrogenase, arginine kinase, heavy metal-binding HIP, cytosolic malate dehydrogenase, proteasome subunit alpha type 2, Mg: bb02e05 (glyceraldehyde-3-phosphate dehydrogenase) and superoxide dismutase) were found to have altered abundance. In addition, bioinformatic analysis suggested putative identities for six hypothetical proteins which either were oxidized or decreased in abundance. These were; 78 kDa glucose-regulated protein precursor, α-enolase, calreticulin, mitochondrial H + -ATPase, palmitoyl protein thioesterase 1 and initiation factor 5a. It is concluded that diclofenac causes significant oxidative stress to gills and that this affects key structural, metabolic and stress-response proteins.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Diclofenaco/metabolismo , Branquias/efectos de los fármacos , Mytilus edulis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteoma/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Antiinflamatorios no Esteroideos/toxicidad , Diclofenaco/toxicidad , Branquias/metabolismo , Mytilus edulis/metabolismo , Oxidación-Reducción , Proteómica , Contaminantes Químicos del Agua/toxicidad
16.
Environ Sci Pollut Res Int ; 22(14): 10956-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25779113

RESUMEN

This study aimed at analyzing the impact of a toxic polyaromatic hydrocarbon (PAH), anthracene (ANT), on Ruditapes decussatus collected from a Tunisian coastal lagoon (Bizerte Lagoon). Filtration rates, several antioxidant enzymes--superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione transferase (GST)--as well as indices of protein oxidation status were determined in various tissues of this bivalve. Specimens were exposed to 100 µg/L of ANT for 2 days. ANT levels were evaluated using HPLC and were detected in the gill and digestive gland at different amounts. ANT exposure altered the behavior of bivalves by changing the siphon movement and decreasing filtration rate significantly. The enzymatic results indicated that ANT exposure affected the oxidative stress status of the gills of R. decussatus. In addition, modification of proteins was detected in the gills using redox proteomics after ANT treatment. Three protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly related to muscle contraction function. In contrast, no significant modification of enzymatic and protein responses was detected in the digestive gland after ANT treatment. These data demonstrate that combined behavioral and biochemical analyses are a powerful tool to provide valuable insights into possible mechanisms of toxicity of anthracene in R. decussatus. Additionally, the results highlight the potential of the gill as a valuable candidate for investigating PAH toxicity.


Asunto(s)
Antracenos/toxicidad , Bivalvos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Bivalvos/metabolismo , Bivalvos/fisiología , Catalasa/metabolismo , Filtración , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteómica , Superóxido Dismutasa/metabolismo
17.
Open Biol ; 5(2): 140221, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25673330

RESUMEN

Proteins adopt defined structures and are crucial to most cellular functions. Their misfolding and aggregation is associated with numerous degenerative human disorders such as type II diabetes, Huntington's or Alzheimer's diseases. Here, we aim to understand why cells promote the formation of protein foci. Comparison of two amyloid-ß-peptide variants, mostly insoluble but differently recruited by the cell (inclusion body versus diffused), reveals small differences in cell fitness and proteome response. We suggest that the levels of oxidative stress act as a sensor to trigger protein recruitment into foci. Our data support a common cytoplasmic response being able to discern and react to the specific properties of polypeptides.


Asunto(s)
Agregado de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Modelos Biológicos , Mutación , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Respuesta de Proteína Desplegada
18.
Environ Toxicol Chem ; 34(1): 84-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263122

RESUMEN

The redox status of cells is involved in the regulation of several cellular stress-response pathways. It is frequently altered by xenobiotics, as well as by environmental stressors. As such, there is an increasing interest in understanding the redox status of proteins in different scenarios. Recent advances in proteomics enable researchers to measure oxidative lesions in a wide range of proteins. This opens the door to the sensitive detection of toxicity targets and helps decipher the molecular impact of pollutants and environmental stressors. The present study applies the measurement of protein carbonyls, the most common oxidative lesion of proteins, to gel-based proteomics in Daphnia magna. Daphnids were exposed to copper and paraquat, 2 well-known pro-oxidants. Catalase activity was decreased by paraquat, whereas global measurement of protein carbonyls and thiols indicated no change with treatment. Despite the absence of observed oxidative stress, 2-dimensional electrophoresis of the daphnid proteins and measurement of their carbonylation status revealed that 32 features were significantly affected by the treatments, showing higher sensitivity than single measurements. Identified proteins affected by copper indicated a decrease in the heat-shock response, whereas paraquat affected glycolysis. The present study demonstrates the applicability of redox-proteomics in daphnids, and indicates that the heat-shock response plays a counterintuitive role in metal resistance in daphnids.


Asunto(s)
Cobre/toxicidad , Daphnia/efectos de los fármacos , Oxidantes/toxicidad , Paraquat/toxicidad , Proteoma/metabolismo , Animales , Daphnia/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Carbonilación Proteica , Proteómica , Especies Reactivas de Oxígeno/metabolismo
19.
BMC Vet Res ; 10: 85, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24708841

RESUMEN

BACKGROUND: Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs. RESULTS: The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk. CONCLUSIONS: In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function.


Asunto(s)
Animales Recién Nacidos/sangre , Proteínas Sanguíneas/análisis , Calostro/fisiología , Proteoma/fisiología , Ovinos/sangre , Animales , Animales Recién Nacidos/fisiología , Apolipoproteínas A/sangre , Proteínas Sanguíneas/fisiología , Fibrinógeno , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Fragmentos de Péptidos/sangre , Plasminógeno/análisis , Proteína Amiloide A Sérica/análisis , Ovinos/fisiología
20.
Plant Cell Environ ; 37(7): 1499-515, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24393025

RESUMEN

All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms.


Asunto(s)
Adaptación Fisiológica , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , Agua/metabolismo , Secuencia de Aminoácidos , Biomasa , Citoesqueleto/metabolismo , Deshidratación , Desecación , Electroforesis en Gel Bidimensional , Metabolismo Energético , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Proteínas de Plantas/química , Análisis de Componente Principal , Biosíntesis de Proteínas , Proteoma/química , Transducción de Señal , Estrés Fisiológico , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...