Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591684

RESUMEN

This work outlines conditions suitable for the heteroepitaxial growth of Cr2O3(0001) films (1.5-20 nm thick) on a Ru(0001)-terminated substrate. Optimized growth is achieved by sputter deposition of Cr within a 4 mTorr Ar/O2 20% ambient at Ru temperatures ranging from 450 to 600 °C. The Cr2O3 film adopts a 30° rotated honeycomb configuration with respect to the underlying Ru(0001) substrate and exhibits a hexagonal lattice parameter consistent with that for bulk Cr2O3(0001). Heating to 700 °C within the same environment during film preparation leads to Ru oxidation. Exposure to temperatures at or above 400 °C in a vacuum, Ar, or Ar/H2 3% leads to chromia film degradation characterized by increased Ru 3d XPS intensity coupled with concomitant Cr 2p and O 1s peak attenuations when compared to data collected from unannealed films. An ill-defined but hexagonally well-ordered RuxCryOz surface structure is noted after heating the film in this manner. Heating within a wet Ar/H2 3% environment preserves the Cr2O3(0001)/Ru(0001) heterolayer structure to temperatures of at least 950 °C. Heating an Ru-Cr2O3-Ru heterostacked film to 950 °C within this environment is shown by cross-sectional scanning/transmission electron microscopy (S/TEM) to provide clear evidence of retained epitaxial bicrystalline oxide interlayer structure, interlayer immiscibility, and epitaxial registry between the top and bottom Ru layers. Subtle effects marked by O enrichment and O 1s and Cr 2p shifts to increased binding energies are noted by XPS in the near-Ru regions of Cr2O3(0001)/Ru(0001) and Ru(0001)/Cr2O3(0001)/Ru(0001) films after annealing to different temperatures in different sets of environmental conditions.

3.
Addict Biol ; 28(12): e13344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017643

RESUMEN

Opioid use disorder has become an epidemic in the United States, fuelled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration (SA) that can be readily applied in labs without intravascular access. Using a traditional two-lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction. Oral SA also revealed individual and sex differences that are essential to studying substance use risk propensity. During a behavioural economics task, rats displayed inelastic demand curves and maintained stable intake across a wide range of fentanyl concentrations. Oral SA was also neatly patterned, with distinct 'loading' and 'maintenance' phases of responding within each session. Using our software DeepSqueak, we analysed ultrasonic vocalizations (USVs), which are innate expressions of current emotional state in rats. Rats produced 50 kHz USVs during loading then shifted quickly to 22 kHz calls despite ongoing maintenance of oral fentanyl taking, reflecting a transition to negative reinforcement. Using fibre photometry, we found that the lateral habenula differentially processed drug cues and drug consumption depending on affective state, with potentiated modulation by drug cues and consumption during the negative affective maintenance phase. Together, these results indicate a rapid progression from positive to negative reinforcement occurs even within an active drug taking session, revealing a within-session opponent process.


Asunto(s)
Fentanilo , Vocalización Animal , Ratas , Femenino , Masculino , Animales , Ultrasonido , Autoadministración/psicología , Emociones
4.
Addict Neurosci ; 82023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37664219

RESUMEN

The striatum, both dorsal and ventral, is strongly implicated in substance use disorder. Chronic consumption of abused substances, such as cocaine, can cause an oversaturation of mesostriatal dopamine, which results in alterations in the firing of striatal neurons. While most preclinical studies of drug self-administration (S-A) are focused on these alterations, individual differences in a subject's early responses to drugs can also account for substantial differences in addiction susceptibility. In this study, we modeled longitudinal pharmacokinetics using data from a previous longitudinal study (Coffey et al., 2015) and aimed to determine if firing in specific dorsal and ventral striatal subregions was subject to changes across chronic cocaine S-A, and if individual animal differences in striatal firing in response to early drug exposure correlated with increases in drug intake. We observed that the firing patterns of nucleus accumbens (NAc) core and shell neurons exhibited increasing sensitivity to cocaine over the first 6 S-A sessions and maintained a strong negative correlation between drug intake and neuronal firing rates across chronic S-A. Moreover, we observed that the early sensitivity of NAc shell neurons to cocaine correlated with future increases in drug intake. Specifically, rats whose NAc shell neurons were most inhibited by increasing levels of cocaine upon first exposure exhibited the strongest increases in cocaine intake over time. If this difference can be linked to a genetic difference, or druggable targets, it may be possible to screen for similar addiction susceptibility in humans or develop novel preemptive pharmacotherapies.

5.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37163074

RESUMEN

Opioid use disorder has become an epidemic in the United States, fueled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration that can be readily applied in labs without intravascular access. Using a traditional two lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction. Oral self-administration also revealed individual and sex differences that are essential to studying substance use risk propensity. During a behavioral economics task, rats displayed inelastic demand curves and maintained stable intake across a wide range of fentanyl concentrations. Oral SA was also neatly patterned, with distinct "loading" and "maintenance" phases of responding within each session. Using our software DeepSqueak, we analyzed thousands of ultrasonic vocalizations (USVs), which are innate expressions of current emotional state in rats. Rats produced 50 kHz USVs during loading then shifted quickly to 22 kHz calls despite ongoing maintenance oral fentanyl taking, reflecting a transition to negative reinforcement. Using fiber photometry, we found that the lateral habenula differentially processed drug-cues and drug-consumption depending on affective state, with potentiated modulation by drug cues and consumption during the negative affective maintenance phase. Together, these results indicate a rapid progression from positive to negative reinforcement occurs even within an active drug taking session, revealing a within-session opponent process.

6.
Nano Lett ; 22(24): 9958-9963, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36511687

RESUMEN

Single-crystal nanowires are of broad interest for applications in nanotechnology. However, such wires are subject to both the Rayleigh-Plateau instability and an ovulation process that are expected to lead to their break up into particle arrays. Single crystal Ru nanowires were fabricated with axes lying along different crystallographic orientations. Wires bound by equilibrium facets along their length did not break up through either a Rayleigh-Plateau or ovulation process, while wires with other orientations broke up through a combination of both. Mechanistic insight is provided using a level-set simulation that accounts for strongly anisotropic surface energies, providing a framework for design of morphologically stable nanostructures.

7.
Biol Psychiatry Glob Open Sci ; 2(2): 180-189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35441155

RESUMEN

Background: Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function. Methods: To investigate this directly, we used RNA sequencing of ribosome-associated RNAs from striatal microglia (RiboTag-Seq) after the induction of morphine tolerance and followed by naloxone precipitated withdrawal (n=16). We validated the RNA-Seq data by combining fluorescent in-situ hybridization with immunohistochemistry for microglia (n=18). Finally, we expressed and activated the Gi/o-coupled hM4Di DREADD receptor in CX3CR1-expressing cells during morphine withdrawal (n=18). Results: We detected large, inverse changes in RNA translation following opioid tolerance and withdrawal. WGCNA analysis revealed an intriguing network of cAMP-associated genes that are known to be involved in microglial motility, morphology, and interactions with neurons that were downregulated with morphine tolerance and upregulated rapidly by withdrawal. Three-dimensional histological reconstruction of microglia allowed for volumetric, visual colocalization of mRNA within individual microglia that validated our bioinformatics results. Direct activation of Gi/o-coupled DREADD receptors in CX3CR1-expressing cells exacerbated signs of opioid withdrawal rather than mimicking the effects of morphine. Conclusions: These results indicate that Gi-signaling and cAMP-associated gene networks are inversely engaged during opioid tolerance and early withdrawal, perhaps revealing a role of microglia in mitigating the consequences of opioids.

8.
Eur J Neurosci ; 54(7): 6397-6405, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34505325

RESUMEN

The lateral preoptic area is implicated in numerous aspects of substance use disorder. In particular, the lateral preoptic area is highly sensitive to the pharmacological properties of psychomotor stimulants, and its activity promotes drug-seeking in the face of punishment and reinstatement during abstinence. Despite the lateral preoptic area's complicity in substance use disorder, how precisely lateral preoptic area neurons signal the individual components of drug self-administration has not been ascertained. To bridge this gap, we examined how the firing of single lateral preoptic area neurons correlates with three discrete elements of cocaine self-administration: (1) drug-seeking (pre-response), (2) drug-taking (response) and (3) receipt of the cocaine infusion. A significant subset of lateral preoptic area neurons responded to each component with a mix of increases and decreases in firing-rate. A majority of these neurons signal the operant response with increases in spiking, though responses during the drug-seeking, taking and reciept windows were highly correlated.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Condicionamiento Operante , Comportamiento de Búsqueda de Drogas , Humanos , Neuronas , Área Preóptica , Autoadministración
9.
Neurobiol Stress ; 13: 100268, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344721

RESUMEN

The lateral habenula (LHb) integrates critical information regarding aversive stimuli that shapes decision making and behavioral responses. The three major LHb outputs innervate dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). LHb neurons that project to these targets are segregated and nonoverlapping, and this led us to consider whether they have distinct molecular phenotypes and adaptations to stress exposure. In order to capture a time-locked profile of gene expression after repeated forced swim stress, we used intersectional expression of RiboTag in rat LHb neurons and next-gen RNA sequencing to interrogate the RNAs actively undergoing translation from each of these pathways. The "translatome" in the neurons comprising these pathways was similar at baseline, but diverged after stress, especially in the neurons projecting to the RMTg. Using weighted gene co-expression network analysis, we found one module, which had an overrepresentation of genes associated with phosphoinositide 3 kinase (PI3K) signaling, comprising genes downregulated after stress in the RMTg-projecting LHb neurons. Reduced PI3K signaling in RMTg-projecting LHb neurons may be a compensatory adaptation that alters the functional balance of LHb outputs to GABAergic vs. monoaminergic neurons following repeated stress exposure.

10.
Neuropsychopharmacology ; 45(7): 1115-1124, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958800

RESUMEN

The lateral habenula (LHb) processes information about aversive experiences that contributes to the symptoms of stress disorders. Previously, we found that chemogenetic inhibition of rat LHb neurons reduced immobility in the forced swim test, but the downstream target of these neurons was not known. Using an intersectional viral vector strategy, we selectively transduced three different output pathways from the LHb by injecting AAV8-DIO-hM4Di into the LHb and CAV2-CRE (a retrograde viral vector) into one of the three target areas as follows: dorsal raphe nucleus (DRN), ventral tegmental area (VTA), or rostromedial tegmentum (RMTg). Using the forced swim test, we found that chemogenetic inhibition of DRN-projecting LHb neurons reduced passive coping (immobility), whereas inhibition of the other pathways did not. Chemogenetic activation of DRN-projecting neurons using hM3Dq in another cohort did not further exacerbate immobility. We next examined the impact of inhibiting DRN-projecting LHb neurons on reward sensitivity, perseverative behavior, and anxiety-like behavior using saccharin preference testing, reward-omission testing, and open-field testing, respectively. There was no effect of inhibiting any of these pathways on reward sensitivity, locomotion, or anxiety-like behavior, but inhibiting DRN-projecting LHb neurons reduced perseverative licking during reward-omission testing, whereas activating these neurons increased perseverative licking. These results support the idea that inhibiting LHb projections to the DRN provides animals with resilience during highly stressful or frustrating conditions but not under low-stress circumstances, and that inhibiting these neurons may promote persistence in active coping strategies.


Asunto(s)
Adaptación Psicológica/fisiología , Núcleo Dorsal del Rafe/fisiología , Habénula/fisiología , Inhibición Neural/fisiología , Recompensa , Tegmento Mesencefálico/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Vectores Genéticos , Pérdida de Tono Postural/fisiología , Locomoción/fisiología , Masculino , Vías Nerviosas/fisiología , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA