Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(2): e0148650, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26862897

RESUMEN

Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.


Asunto(s)
Proteínas Fúngicas/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Agua , División Celular , Medios de Cultivo/farmacología , Degradación Asociada con el Retículo Endoplásmico , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Micología/métodos , Péptidos/análisis , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
2.
Mol Med ; 21: 505-14, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26062019

RESUMEN

Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide's antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide's direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/administración & dosificación , Neuronas/efectos de los fármacos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/genética , Edema Encefálico/patología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Humanos , Imagen por Resonancia Magnética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/biosíntesis , Necrosis/diagnóstico por imagen , Necrosis/tratamiento farmacológico , Necrosis/patología , Neuronas/diagnóstico por imagen , Neuronas/patología , Células PC12 , Radiografía , Ratas
3.
PLoS One ; 9(10): e111505, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356557

RESUMEN

Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.


Asunto(s)
Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/farmacología , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Modelos Biológicos , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
4.
PLoS One ; 7(9): e44785, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970306

RESUMEN

Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Choque Térmico/fisiología , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Sirtuina 2/fisiología , Factores de Transcripción/fisiología , Western Blotting , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Microscopía Fluorescente , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
5.
Org Lett ; 10(22): 5243-6, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18959426

RESUMEN

A new transformation based on the Staudinger reaction is described, and its application in the design of a novel switch element to control peptide folding is demonstrated. We found that the azide switch is activated rapidly in water to promote acyl transfer using tris(2-carboxyethyl)phosphine hydrochloride (TCEP) via the Staudinger reaction. Our findings expand the repertoire of uses of the Staudinger reaction in chemical biology and the number of available triggers for use in switch peptides.


Asunto(s)
Azidas/química , Péptidos/química , Fosfinas/química , Cromatografía Líquida de Alta Presión , Ésteres/química , Péptidos/metabolismo , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA