Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38773314

RESUMEN

Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.

2.
Neuropharmacology ; 248: 109891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417545

RESUMEN

Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Asunto(s)
Analgésicos Opioides , Trastornos Mentales , Humanos , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Corteza Prefrontal/metabolismo , Trastornos Mentales/metabolismo , Transducción de Señal , Motivación
3.
bioRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38045379

RESUMEN

Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. Proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. Activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant for alcohol use.

4.
J Neurosci ; 43(27): 4997-5013, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37268419

RESUMEN

Astrocytes are key cellular regulators within the brain. The basolateral amygdala (BLA) is implicated in fear memory processing, yet most research has entirely focused on neuronal mechanisms, despite a significant body of work implicating astrocytes in learning and memory. In the present study, we used in vivo fiber photometry in C57BL/6J male mice to record from amygdalar astrocytes across fear learning, recall, and three separate periods of extinction. We found that BLA astrocytes robustly responded to foot shock during acquisition, their activity remained remarkably elevated across days in comparison to unshocked control animals, and their increased activity persisted throughout extinction. Further, we found that astrocytes responded to the initiation and termination of freezing bouts during contextual fear conditioning and recall, and this behavior-locked pattern of activity did not persist throughout the extinction sessions. Importantly, astrocytes do not display these changes while exploring a novel context, suggesting that these observations are specific to the original fear-associated environment. Chemogenetic inhibition of fear ensembles in the BLA did not affect freezing behavior or astrocytic calcium dynamics. Overall, our work presents a real-time role for amygdalar astrocytes in fear processing and provides new insight into the emerging role of these cells in cognition and behavior.SIGNIFICANCE STATEMENT We show that basolateral amygdala astrocytes are robustly responsive to negative experiences, like shock, and display changed calcium activity patterns through fear learning and memory. Additionally, astrocytic calcium responses become time locked to the initiation and termination of freezing behavior during fear learning and recall. We find that astrocytes display calcium dynamics unique to a fear-conditioned context, and chemogenetic inhibition of BLA fear ensembles does not have an impact on freezing behavior or calcium dynamics. These findings show that astrocytes play a key real-time role in fear learning and memory.


Asunto(s)
Complejo Nuclear Basolateral , Ratones , Animales , Masculino , Complejo Nuclear Basolateral/fisiología , Calcio , Astrocitos , Extinción Psicológica/fisiología , Ratones Endogámicos C57BL , Miedo/fisiología
5.
Proc Natl Acad Sci U S A ; 119(12): e2114230119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286206

RESUMEN

For group-living animals, the social environment provides salient experience that can weaken or strengthen aspects of cognition such as memory recall. Although the cellular substrates of individually acquired fear memories in the dentate gyrus (DG) and basolateral amygdala (BLA) have been well-studied and recent work has revealed circuit mechanisms underlying the encoding of social experience, the processes by which social experience interacts with an individual's memories to alter recall remain unknown. Here we show that stressful social experiences enhance the recall of previously acquired fear memories in male but not female mice, and that social buffering of conspecifics' distress blocks this enhancement. Activity-dependent tagging of cells in the DG during fear learning revealed that these ensembles were endogenously reactivated during the social experiences in males, even after extinction. These reactivated cells were shown to be functional components of engrams, as optogenetic stimulation of the cells active during the social experience in previously fear-conditioned and not naïve animals was sufficient to drive fear-related behaviors. Taken together, our findings suggest that social experiences can reactivate preexisting engrams to thereby strengthen discrete memories.


Asunto(s)
Miedo , Memoria , Interacción Social , Animales , Miedo/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...