Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(34): 12437-12446, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35979747

RESUMEN

The adsorption and desorption kinetics of molecules is of significant fundamental and applied interest. In this paper, we present a new method to quantify the energy barriers for the adsorption and desorption of gas molecules on few-atom clusters, by exploiting reaction induced changes of the doping level of a graphene substrate. The method is illustrated for oxygen adsorption on Au3 clusters. The gold clusters were deposited on a graphene field effect transistor and exposed to O2. From the change in graphene's electronic properties during adsorption, the energy barrier for the adsorption of O2 on Au3 is estimated to be 0.45 eV. Electric current pulses increase the temperature of the graphene strip in a controlled way and provide the required thermal energy for oxygen desorption. The oxygen binding energy on Au3/graphene is found to be 1.03 eV and the activation entropy is 1.4 meV K-1. The experimental values are compared and interpreted on the basis of density functional theory calculations of the adsorption barrier, the binding energy and the activation entropy. The large value of the activation entropy is explained by the hindering effect that the adsorbed O2 has on the fluxional motion of the Au3 cluster.

2.
Nanoscale ; 14(14): 5425-5429, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322834

RESUMEN

In a multi-branch metallic interconnect we demonstrate the possibility to induce targeted modifications of the material properties by properly selecting the intensity and polarity of the applied current. We illustrate this effect in Y-shape multiterminal devices made of Nb on sapphire for which we show that the superconducting critical current can be lowered in a controlled manner at a preselected junction. We further observe the gradual appearance of Fraunhofer-like critical current oscillations with magnetic field which indicates the gradual modification of a superconducting weak link. This method permits progressive modifications of a hand-picked junction without affecting the neighboring terminals. The proposed approach has the benefit of being inexpensive and requiring conventional electronics. This technique represents a major step toward all-electric control of multiterminal Josephson junctions.

3.
ACS Nano ; 14(9): 11765-11774, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32806022

RESUMEN

The past years have witnessed major advancements in all-electrical doping control on cuprates. In the vast majority of cases, the tuning of charge carrier density has been achieved via electric field effect by means of either a ferroelectric polarization or using a dielectric or electrolyte gating. Unfortunately, these approaches are constrained to rather thin superconducting layers and require large electric fields in order to ensure sizable carrier modulations. In this work, we focus on the investigation of oxygen doping in an extended region through current-stimulated oxygen migration in YBa2Cu3O7-δ superconducting bridges. The underlying methodology is rather simple and avoids sophisticated nanofabrication process steps and complex electronics. A patterned multiterminal transport bridge configuration allows us to electrically assess the directional counterflow of oxygen atoms and vacancies. Importantly, the emerging propagating front of current-dependent doping δ is probed in situ by optical microscopy and scanning electron microscopy. The resulting imaging techniques, together with photoinduced conductivity and Raman scattering investigations, reveal an inhomogeneous oxygen vacancy distribution with a controllable propagation speed permitting us to estimate the oxygen diffusivity. These findings provide direct evidence that the microscopic mechanism at play in electrical doping of cuprates involves diffusion of oxygen atoms with the applied current. The resulting fine control of the oxygen content would permit a systematic study of complex phase diagrams and the design of electrically addressable devices.

4.
FEBS Open Bio ; 4: 1021-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25493216

RESUMEN

Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2 (•) (-)), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. The purpose of this study was to compare the antioxidant effect of NDS27 and NDS28, two water-soluble forms of curcumin lysinate respectively complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) and γ-cyclodextrin (γ-CD), on the activity of Nox2 and PKCδ, involved in the Nox2 activation pathway. Our results, showed that NDS27 is the best inhibitor for Nox2 and PKCδ. This was illustrated by the combined effect of HPßCD and curcumin lysinate: HPßCD, but not γ-CD, improved the release of curcumin lysinate and its exchange against lipid or cholesterol as demonstrated by the lipid colouration with Oil Red O, the extraction of radical lipophilic probes recorded by ESR and the HPLC measurements of curcumin. HPßCD not only solubilised and transported curcumin, but also indirectly enhanced its action on both PKC and Nox2 activities. The modulatory effect of NDS27 on the Nox2 activation pathway of neutrophils may open therapeutic perspectives for the control of pathologies with excessive inflammatory reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA