Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 5421, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214113

RESUMEN

Southern India lies in an area of Gondwana where multiple blocks are juxtaposed along Moho-penetrating structures, the significance of which are not well understood. Adequate geochronological data that can be used to differentiate the various blocks are also lacking. We present a newly acquired SIMS U-Pb, Lu-Hf, O isotopic and trace element geochemical dataset from zircon and garnet from the protoliths of the Nagercoil Block at the very tip of southern India. The data indicate that the magmatic protoliths of the rocks in this block formed at c. 2040 Ma with Lu-Hf, O-isotope and trace element data consistent with formation in a magmatic arc environment. The zircon data from Nagercoil Block are isotopically and temporally distinct from those in all the other blocks in southern India, but remarkably correspond to rocks in East Africa that are exposed on the southern margin of the Tanzania-Bangweulu Block. The new data suggest that the tip of southern India has an African affinity and a major suture zone must lie along its northern margin. All of these blocks were finally brought together during the Ediacaran-Cambrian amalgamation of Gondwana where they underwent high to ultrahigh temperature metamorphism.

2.
Sci Rep ; 9(1): 5200, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914671

RESUMEN

Precambrian hydrocarbons and their corresponding source rocks are distinctly different from their Phanerozoic counterparts, having been deposited in persistently anoxic environments in ecosystems dominated by bacteria. Here, we show that cyclic enrichment of organic matter in the world's oldest hydrocarbon play (ca. 1.38 Ga), is not associated with flooding surfaces and is unrelated to variations in mineralogy or changes in the relative rate of clastic to biogenic sedimentation-factors typically attributed to organic enrichment in Phanerozoic shales. Instead, the cyclic covariation of total organic carbon, δ15N, δ13C and molybdenum are explained by the feedback between high levels of primary productivity, basin redox and the biogeochemical nitrogen cycle. These factors are important in constraining productivity in the marine biosphere, the development of Precambrian hydrocarbon source rocks, and more generally in understanding oxygenation of the ocean and atmosphere through Earth history; as all are ultimately related to organic carbon burial.

3.
Data Brief ; 21: 1794-1809, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30505918

RESUMEN

This data article provides zircon U-Pb and Lu-Hf isotopic information along with whole-rock Sm-Nd, Sr and Pb isotopic geochemistry from granitoids in Thailand. The U-Pb ages are described and the classification of crystallisation and inherited ages are explained. The petrography of the granitoid samples is detailed. The data presented in this article are interpreted and discussed in the research article entitled "Probing into Thailand's basement: New insights from U-Pb geochronology, Sr, Sm-Nd, Pb and Lu-Hf isotopic systems from granitoids" (Dew et al., 2018).

4.
Sci Rep ; 8(1): 16619, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413732

RESUMEN

West Africa was subjected to deformation and exhumation in response to Gondwana break-up. The timing and extent of these events are recorded in the thermal history of the margin. This study reports new apatite fission track (AFT) data from Palaeoproterozoic basement along the primary NE-SW structural trend of the Bole-Nangodi shear zone in northwestern Ghana. The results display bimodality in AFT age (populations of ~210-180 Ma and ~115-105 Ma) and length distributions (populations of 12.2 ± 1.6 and 13.1 ± 1.4 µm), supported by differences in apatite chemistry (U concentrations). The bimodal AFT results and associated QTQt thermal history models provide evidence for multiple cooling phases. Late Triassic - Early Jurassic cooling is interpreted to be related with thermal relaxation after the emplacement of the Central Atlantic Magmatic Province (CAMP). Early to middle Cretaceous cooling is thought to be associated with exhumation during the Cretaceous onset of rifting between West Africa and Brazil. Late Cretaceous - Cenozoic cooling can be related with exhumation of the Ivory Coast - Ghana margin and NNW-SSE shortening through western Africa. Furthermore, our data record differential exhumation of the crust with respect to the Bole-Nangodi shear zone, preserving older (CAMP) cooling ages to the south and younger (rifting) cooling ages to the north of the shear zone, respectively. This suggests that the Palaeoproterozoic BN shear zone was reactivated during the Cretaceous as a result of deformation in the Equatorial Atlantic region of Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...