Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(17): e202400205, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529822

RESUMEN

Development of devices for production of H2 using light and a sustainable source of electrons may require the design of molecular systems combining a molecular catalyst and a photosensitizer. Evaluation of the efficiency of hydrogen production is commonly performed in homogeneous solution with a sacrificial electron donor and the report of the maximal turnover number vs catalyst ( T O N c a t lim ${TON_{cat}^{\lim } }$ ). This figure of merit is strongly dependent on deactivation pathways and does not by itself provide a benchmarking for catalysts. In particular, when the photosensitizer degradation is the primary source of limitation, a kinetic model, rationalizing literature data, shows that a decrease of the catalyst concentration leads to an increase of T O N c a t lim ${TON_{cat}^{\lim } }$ . It indicates that exceptionally high T O N c a t lim ${TON_{cat}^{\lim } }$ obtained at very low catalyst concentration shall not be considered as an indication of an exceptional catalytic system. We advocate for a systematic kinetic analysis in order to get a quantitative measure of the competitive pathways leading to T O N c a t lim ${TON_{cat}^{\lim } }$ values and to provide keys for performance improvement.

2.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235152

RESUMEN

Molecular hydrogen (H2) is considered one of the most promising fuels to decarbonize the industrial and transportation sectors, and its photocatalytic production from molecular catalysts is a research field that is still abounding. The search for new molecular catalysts for H2 production with simple and easily synthesized ligands is still ongoing, and the terpyridine ligand with its particular electronic and coordination properties, is a good candidate to design new catalysts meeting these requirements. Herein, we have isolated the new mono-terpyridyl rhodium complex, [RhIII(tpy)(CH3CN)Cl2](CF3SO3) (Rh-tpy), and shown that it can act as a catalyst for the light-induced proton reduction into H2 in water in the presence of the [Ru(bpy)3]Cl2 (Ru) photosensitizer and ascorbate as sacrificial electron donor. Under photocatalytic conditions, in acetate buffer at pH 4.5 with 0.1 M of ascorbate and 530 µM of Ru, the Rh-tpy catalyst produces H2 with turnover number versus catalyst (TONCat*) of 300 at a Rh concentration of 10 µM, and up to 1000 at a concentration of 1 µM. The photocatalytic performance of Ru/Rh-tpy/HA-/H2A has been also compared with that obtained with the bis-dimethyl-bipyridyl complex [RhIII(dmbpy)2Cl2]+ (Rh2) as a catalyst in the same experimental conditions. The investigation of the electrochemical properties of Rh-tpy in DMF solvent reveals that the two-electrons reduced state of the complex, the square-planar [RhI(tpy)Cl] (RhI-tpy), is quantitatively electrogenerated by bulk electrolysis. This complex is stable for hours under an inert atmosphere owing to the π-acceptor property of the terpyridine ligand that stabilizes the low oxidation states of the rhodium, making this catalyst less prone to degrade during photocatalysis. The π-acceptor property of terpyridine also confers to the Rh-tpy catalyst a moderately negative reduction potential (Epc(RhIII/RhI) = -0.83 V vs. SCE in DMF), making possible its reduction by the reduced state of Ru, [RuII(bpy)(bpy•-)]+ (Ru-) (E1/2(RuII/Ru-) = -1.50 V vs. SCE) generated by a reductive quenching of the Ru excited state (*Ru) by ascorbate during photocatalysis. A Stern-Volmer plot and transient absorption spectroscopy confirmed that the first step of the photocatalytic process is the reductive quenching of *Ru by ascorbate. The resulting reduced Ru species (Ru-) were then able to activate the RhIII-tpy H2-evolving catalyst by reduction generating RhI-tpy, which can react with a proton on a sub-nanosecond time scale to form a RhIII(H)-tpy hydride, the key intermediate for H2 evolution.

3.
Inorg Chem ; 60(11): 7922-7936, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34014651

RESUMEN

We report on the isolation of a new family of µ-carboxylato-bridged metallocrown (MC) compounds by self-assembly of the recently isolated hexadentate tris(2-pyridylmethyl)amine ligand tpada2- incorporating two carboxylate units with metal cations. Twelve-membered MCs of manganese of the type 12-MC-3, namely, [{MnII(tpada)}3(M)(H2O)n]2+ (Mn3M) (M = Mn2+ (n = 0), Ca2+ (n = 1), or Sr2+ (n = 2)), were structurally characterized. The metallamacrocycles connectivity consisting in three -[Mn-O-C-O]- repeating units is provided by one carboxylate unit of the three tpada2- ligands, while the second carboxylate coordinated a fourth cation in the central cavity of the MC, Mn2+ or an alkaline earth metal, Ca2+ or Sr2+. Mn3Ca and {Mn3Sr}2 join the small family of heterometallic manganese-calcium complexes and even rarer manganese-strontium complexes as models of the OEC of photosystem II (PSII). A 8-MC-4 of strontium of the molecular wheel type with four -[Sr-O]- repeating unit was also isolated by self-assembly of the tpada2- ligand with Sr2+. This complex, namely, [Sr(tpada)(OH2)]4 (Sr4), does not incorporate any cation in the central cavity but instead four water molecules coordinated to each Sr2+. Electrochemical investigations coupled to UV-visible absorption and EPR spectroscopies as well as electrospray mass spectrometry reveal the stability of the 12-MC-3 tetranuclear structures in solution, both in the initial oxidation state, MnII3M, as well as in the three-electrons oxidized state, MnIII3M. Indeed, the cyclic voltammogram of all these complexes exhibits three-successive reversible oxidation waves between +0.5 and +0.9 V corresponding to the successive one-electron oxidation of the Mn(II) ion into Mn(III) of the three {Mn(tpada)} units constituting the ring, which are fully maintained after bulk electrolysis.

4.
J Phys Chem Lett ; 11(15): 6097-6104, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32635738

RESUMEN

Electrophotocatalysis (e-PC) is currently experiencing a renewed interest. By taking advantage of the highly oxidizing or reducing power of excited state of electrogenerated ion radicals, it allows thermodynamically difficult redox reactions to be performed. However, e-PC is facing various specific issues, such as its fundamentally heterogeneous nature, implying that mass transport is coupled to chemical reactions and light absorption; back electron transfer of the ion radical excited state with the electrode; and local heating near the electrode surface modifying mass transport conditions. Herein, we address these issues in the context of cyclic voltammetry as an analytical tool and we provide a rational framework for kinetic studies of electrophotocatalytic reactions under realistic conditions and hypothesis based on literature data. This approach may be beneficial to rationalize the design and the efficiency of present and future e-PC systems.

5.
Inorg Chem ; 59(13): 9196-9205, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579848

RESUMEN

We report on the synthesis and structural characterization of the cobalt pentanuclear helicate complex from the rigid tetradentate bis(2-pyridyl)-3,5-pyrazolate ligand bpp-, namely, [{CoII(µ-bpp)3}2CoII3(µ3-OH)]3+ (13+), in which a trinuclear {CoII3(µ3-OH)} core is wrapped by two {CoII(µ-bpp)3} units. The cyclic voltammogram of 13+ in CH3CN revealed seven successive reversible one-electron waves, in the 0 and -3.0 V potential range, highlighting the remarkable stability of such architecture in several redox states. Two mixed-valent states of this complex, the two-electron-oxidized CoII3CoIII2 (15+) and the one-electron-reduced species CoICoII4 (12+), were generated by bulk electrolyses and successfully characterized by single-crystal X-ray diffraction among the eight redox levels between CoI5 and CoII3CoIII2 that can be accessed under electrochemical conditions. Because of the crystallographic characterization of 15+ and 12+, the five reduction processes located at E1/2 values of -1.63 (13+/2+), -1.88 (12+/+), -2.14 (1+/0), -2.40 (10/-), and -2.60 V (1-/2-) versus Ag/AgNO3 were unambiguously assigned to the successive reduction of each of the five Co(II) ions to Co(I), starting with the three ions located in the central core followed by the two apical ions. The two other redox events at E1/2 values of -0.21 (14+/3+) and -0.11 V (15+/4+) are assigned to the successive oxidation of the apical Co(II) ions to Co(III). The Co(I) complexes are rare, and the stabilization of a Co(I) within a trinuclear µ-hydroxo core in the reduced species, 12+, 1+, 10, 1-, and 12-, is probably the result of the particular structure of this complex in the presence of the two apical sites that maintain the trinuclear core through the six bridging bpp- ligands. The spectroscopic characteristics of 12+, 13+, and 15+ (ultraviolet-visible and X-band electron paramagnetic resonance) are also described as well as their magnetic properties in the solid state.

6.
Chemistry ; 26(59): 13359-13362, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32220098

RESUMEN

A pyridinium substituted dithienylethene derivative was used for the first time as an efficient photoreducing agent of two different substrates. This reaction exhibits high catalytic yields due to the continuous regeneration of the initial state of the photochromic molecule.

7.
Inorg Chem ; 58(14): 9043-9056, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247812

RESUMEN

We previously reported that the tetraazamacrocyclic Schiff base complex [CoIII(CR14)(X)2]n+ (CR14 = 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene, X = Cl (n = 1) (1-Cl2) or H2O (n = 3) (1-(H2O)2)) is a very efficient H2-evolving catalyst (HEC) in fully aqueous solutions at pH 4.0-4.5 when used in a photocatalytic system including a photosensitizer and ascorbate as sacrificial electron donor. The excellent H2-evolving activity of this complex, compared to other cobalt and rhodium catalysts studied in the same photocatalytic conditions, can be related to the high stability of its two-electron reduced form, the putative "Co(I)" state. These very interesting results led us to investigate the H2-evolving performances of a series of compounds from a close-related family, the pentaaza-macrocyclic cobalt [CoII(CR15)(H2O)2]Cl2 complex (2, CR15 = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), which comprises a larger macrocycle with five nitrogen atoms instead of four. Electrochemical as well as spectroscopic investigations in CH3CN coupled to density functional theory (DFT) calculations point to decoordination of one of the amine upon reduction of Co(II) to the low-valent "Co(I)" form. The resulting unchelated amine could potentially act as a proton relay promoting the H2 formation via proton-coupled-electron transfer (PCET) reactions. Besides, the iron, manganese, and zinc analogues, [FeII(CR15)(X)2]n+ (X = Cl (n = 0) or H2O (n = 2)) (3), [MnII(CR15)(CH3CN)2](PF6)2 (4), and {[ZnII(CR15)Cl](PF6)}n (5) were also synthesized and investigated. The photocatalytic activity of 2-5 toward proton reduction was then evaluated in a tricomponent system containing the [RuII(bpy)3]Cl2 photosensitizer and ascorbate, in fully aqueous solution. The photocatalytic activity of 2 was also compared with that of 1 in the same experimental conditions. It was found that the number of catalytic cycles versus catalyst for 2 are slightly lower than that for 1, suggesting that if the amine released upon reduction of 2 plays a role in promoting the H2-evolving catalytic activity, other factors balance this effect. Finally, photophysical and nanosecond transient absorption spectroscopies were used to investigate the photocatalytic system.

8.
Inorg Chem ; 57(17): 11225-11239, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30129361

RESUMEN

We previously reported that the [RhIII(dmbpy)2Cl2]+ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) complex is an efficient H2-evolving catalyst in water when used in a molecular homogeneous photocatalytic system for hydrogen production with [RuII(bpy)3]2+ (bpy = 2,2'-bipyridine) as photosensitizer and ascorbic acid as sacrificial electron donor. The catalysis is believed to proceed via a two-electron reduction of the Rh(III) catalyst into the square-planar [RhI(dmbpy)2]+, which reacts with protons to form a Rh(III) hydride intermediate that can, in turn, release H2 following different pathways. To improve the current knowledge of these key intermediate species for H2 production, we performed herein a detailed electrochemical investigation of the [RhIII(dmbpy)2Cl2]+ and [RhIII(dtBubpy)2Cl2]+ (dtBubpy = 4,4'-di- tert-butyl-2,2'-bipyridine) complexes in CH3CN, which is a more appropriate medium than water to obtain reliable electrochemical data. The low-valent [RhI(Rbpy)2]+ and, more importantly, the hydride [RhIII(Rbpy)2(H)Cl]+ species (R = dm or dtBu) were successfully electrogenerated by bulk electrolysis and unambiguously spectroscopically characterized. The quantitative formation of the hydrides was achieved in the presence of weak proton sources (HCOOH or CF3CO3H), owing to the fast reaction of the electrogenerated [RhI(Rbpy)2]+ species with protons. Interestingly, the hydrides are more difficult to reduce than the initial Rh(III) bis-chloro complexes by ∼310-340 mV. Besides, 0.5 equiv of H2 is generated through their electrochemical reduction, showing that Rh(III) hydrides are the initial catalytic molecular species for hydrogen evolution. Density functional theory calculations were also performed for the dmbpy derivative. The optimized structures and the theoretical absorption spectra were calculated for the initial bis-chloro complex and for the various rhodium intermediates involved in the H2 evolution process.

9.
Inorg Chem ; 55(18): 9178-86, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27251764

RESUMEN

With the intention to investigate the redox properties of polynuclear complexes as previously reported for the pentamanganese complex [{Mn(II)(µ-bpp)3}2Mn(III)Mn(II)2(µ3-O)](3+) (2(3+)), we focused on the analogous pentairon complex that was previously isolated as all-ferrous. As Masaoka and co-workers recently published, aerobic synthesis leads to the [{Fe(II)(µ-bpp)3}2Fe(III)Fe(II)2(µ3-O)](3+) complex (1(3+)). This species exhibits in acetonitrile solution four reversible one-electron oxidation waves. Accordingly, the three oxidized species 1(4+), 1(5+), and 1(6+) with a 3Fe(II)2Fe(III), 2Fe(II)3Fe(III), and 1Fe(II)4Fe(III) composition, respectively, were generated by bulk electrolysis and isolated. Mössbauer spectroscopy allowed us to determine the spin states of all the iron ions and to unambiguously locate the sites of the successive oxidations. They all occur in the µ3-oxo core except for the 1(4+) to 1(5+) process that presents a striking electronic rearrangement, with both metals in axial position being oxidized while the core is reduced to the [Fe(III)Fe(II)2(µ3-O)](5+) oxidation level. This strongly differs from the redox behavior of the Mn5 system. The origin of this electronic switch is discussed.

10.
Inorg Chem ; 55(9): 4564-81, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27064169

RESUMEN

A series of [Co(III)(N4Py)(X)](ClO4)n (X = Cl(-), Br(-), OH(-), N3(-), NCS(-)-κN, n = 2: X = OH2, NCMe, DMSO-κO, n = 3) complexes containing the tetrapyridyl N5 ligand N4Py (N4Py = 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) has been prepared and fully characterized by infrared (IR), UV-visible, and NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HRESI-MS), elemental analysis, X-ray crystallography, and electrochemistry. The reduced Co(II) and Co(I) species of these complexes have been also generated by bulk electrolyses in MeCN and characterized by UV-visible and EPR spectroscopies. All tested complexes are catalysts for the photocatalytic production of H2 from water at pH 4.0 in the presence of ascorbic acid/ascorbate, using [Ru(bpy)3](2+) as a photosensitizer, and all display similar H2-evolving activities. Detailed mechanistic studies show that while the complexes retain the monodentate X ligand upon electrochemical reduction to Co(II) species in MeCN solution, in aqueous solution, upon reduction by ascorbate (photocatalytic conditions), [Co(II)(N4Py)(HA)](+) is formed in all cases and is the precursor to the Co(I) species which presumably reacts with a proton. These results are in accordance with the fact that the H2-evolving activity does not depend on the chemical nature of the monodentate ligand and differ from those previously reported for similar complexes. The catalytic activity of this series of complexes in terms of turnover number versus catalyst (TONCat) was also found to be dependent on the catalyst concentration, with the highest value of 230 TONCat at 5 × 10(-6) M. As revealed by nanosecond transient absorption spectroscopy measurements, the first electron-transfer steps of the photocatalytic mechanism involve a reductive quenching of the excited state of [Ru(bpy)3](2+) by ascorbate followed by an electron transfer from [Ru(II)(bpy)2(bpy(•-))](+) to the [Co(II)(N4Py)(HA)](+) catalyst. The reduced catalyst then enters into the H2-evolution cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA