Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(42): e2121105119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215474

RESUMEN

Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.


Asunto(s)
Evolución Biológica , Primates , Américas , Animales , Cercopithecidae , Haplorrinos , Humanos , Madagascar , Mamíferos , Árboles
3.
Folia Primatol (Basel) ; 77(1-2): 143-65, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16415583

RESUMEN

The removal, or absence, of predatory species could be a contributing proximate factor to the rise of primate cathemerality. But predators themselves can also be cathemeral, so cathemerality could well be an evolutionary stable strategy. From a comparative perspective, it appears that the effect of predatory species cannot provide a unitary explanation for cathemerality. Varying distributions and population densities of predators, especially raptors, may be key factors in owl monkey (Aotus) cathemerality, but temperature and lunar cycle variation have also been implicated. In Madagascar, while raptors are potential predators of lemur species, the cathemerality of Eulemur species coincides with that of the fossa (Cryptoprocta ferox), a major predatory threat to lemurs. Thus, lemurid cathemerality may be more parsimoniously explained as an evolutionary stable strategy.


Asunto(s)
Conducta Animal/fisiología , Cebidae/fisiología , Ritmo Circadiano/fisiología , Ecosistema , Lemuridae/fisiología , Conducta Predatoria/fisiología , Animales , Carnívoros/fisiología , Madagascar , Rapaces/fisiología , Serpientes/fisiología , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...