Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Ann Neurol ; 95(2): 325-337, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37787451

RESUMEN

OBJECTIVE: Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases, including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study, we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. METHODS: A total of 95,000 base pairs spanning 1q22, including SEMA4A, SLC25A44, and PMF1/PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and Rare Variant Influential Filtering Tool analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, chromatin immunoprecipitation followed by sequencing, and chromatin interaction analysis with paired-end tag databases. Multivariable Mendelian randomization assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. RESULTS: Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop, and that the genes therein belong to the same topologically associating domain. Chromatin immunoprecipitation followed by sequencing and chromatin interaction analysis with paired-end tag data analysis highlighted the presence of long-range interactions between the SEMA4A-promoter and PMF1-enhancer regions prioritized by association testing. Multivariable Mendelian randomization analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. INTERPRETATION: Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22, offering a potential new target for prevention of ICH and cerebral small vessel disease. ANN NEUROL 2024;95:325-337.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Semaforinas , Accidente Vascular Cerebral Lacunar , Humanos , Estudio de Asociación del Genoma Completo , Hemorragia Cerebral/genética , Hemorragia Cerebral/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Accidente Vascular Cerebral Lacunar/complicaciones , Cromatina , Semaforinas/genética
2.
J Am Heart Assoc ; 12(13): e029862, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37345795

RESUMEN

Cerebral small vessel disease is highly prevalent, particularly in marginalized communities, and its incidence is expected to increase given the aging global population. Cerebral small vessel disease contributes to risk for stroke, vascular cognitive impairment and dementia, late-life depression, and gait disorders. A growing body of evidence suggests that adverse outcomes, including cerebral small vessel disease, caused by traditional cardiovascular risk factors are at least partly mediated by epigenetic changes, some of them already beginning during fetal development. Societal and health care access inequities, summarized under the umbrella term social determinants of health, put a higher burden of cardiovascular risk factors on marginalized populations and expose them to an increased risk for adverse outcomes. Social epigenetics has begun to deliver solid evidence that social determinants of health lead to distinct epigenetic signatures that potentially mediate the biological effect of environmental exposures on cardiovascular risk factors. Here, we provide a review of the most recent advances in the epigenetics of cerebral small vessel disease risk factors and social determinants of health and call for research efforts combining insights from both fields to reach a deeper understanding of the causal pathways, ultimately facilitating discovery of new treatment targets for a disease whose burden is magnified by existing health disparities.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Determinantes Sociales de la Salud , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Factores de Riesgo
3.
medRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162822

RESUMEN

Objective: Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases (CSVDs), including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. Methods: 95,000 base pairs spanning 1q22 , including SEMA4A, SLC25A44 and PMF1 / PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and RIFT analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, ChIP-Seq and ChIA-PET databases. Multivariable Mendelian randomization (MVMR) assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. Results: Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop and that the genes therein belong to the same Topologically Associating Domain. ChIP-Seq and ChIA-PET data analysis highlighted the presence of long-range interactions between the SEMA4A -promoter and PMF1 -enhancer regions prioritized by association testing. MVMR analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. Interpretation: Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22 , offering a potential new target for prevention of ICH and CSVD.

4.
Stroke ; 54(4): 973-982, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36799223

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) has an estimated heritability of 29%. We developed a genomic risk score for ICH and determined its predictive power in comparison to standard clinical risk factors. METHODS: We combined genome-wide association data from individuals of European ancestry for ICH and related traits in a meta-genomic risk score ([metaGRS]; 2.6 million variants). We tested associations with ICH and its predictive performance in addition to clinical risk factors in a held-out validation dataset (842 cases and 796 controls). We tested associations with risk of incident ICH in the population-based UK Biobank cohort (486 784 individuals, 1526 events, median follow-up 11.3 years). RESULTS: One SD increment in the metaGRS was significantly associated with 31% higher odds for ICH (95% CI, 1.16-1.48) in age-, sex- and clinical risk factor-adjusted models. The metaGRS identified individuals with almost 5-fold higher odds for ICH in the top score percentile (odds ratio, 4.83 [95% CI, 1.56-21.2]). Predictive models for ICH incorporating the metaGRS in addition to clinical predictors showed superior performance compared to the clinical risk factors alone (c-index, 0.695 versus 0.686). The metaGRS showed similar associations for lobar and nonlobar ICH, independent of the known APOE risk locus for lobar ICH. In the UK Biobank, the metaGRS was associated with higher risk of incident ICH (hazard ratio, 1.15 [95% CI, 1.09-1.21]). The associations were significant within both a relatively high-risk population of antithrombotic medications users, as well as among a relatively low-risk population with a good control of vascular risk factors and no use of anticoagulants. CONCLUSIONS: We developed and validated a genomic risk score that predicts lifetime risk of ICH beyond established clinical risk factors among individuals of European ancestry. Whether implementation of the score in risk prognostication models for high-risk populations, such as patients under antithrombotic treatment, could improve clinical decision making should be explored in future studies.


Asunto(s)
Fibrinolíticos , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/genética , Genómica
5.
Cell Syst ; 14(1): 41-57.e8, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36630956

RESUMEN

Our knowledge of the cell-type-specific mechanisms of insulin resistance remains limited. To dissect the cell-type-specific molecular signatures of insulin resistance, we performed a multiscale gene network analysis of adipose and muscle tissues in African and European ancestry populations. In adipose tissues, a comparative analysis revealed ethnically conserved cell-type signatures and two adipocyte subtype-enriched modules with opposite insulin sensitivity responses. The modules enriched for adipose stem and progenitor cells as well as immune cells showed negative correlations with insulin sensitivity. In muscle tissues, the modules enriched for stem cells and fibro-adipogenic progenitors responded to insulin sensitivity oppositely. The adipocyte and muscle fiber-enriched modules shared cellular-respiration-related genes but had tissue-specific rearrangements of gene regulations in response to insulin sensitivity. Integration of the gene co-expression and causal networks further pinpointed key drivers of insulin resistance. Together, this study revealed the cell-type-specific transcriptomic networks and signaling maps underlying insulin resistance in major glucose-responsive tissues. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Resistencia a la Insulina , Humanos , Resistencia a la Insulina/genética , Multiómica , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Perfilación de la Expresión Génica
6.
PLoS Genet ; 18(11): e1010253, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327221

RESUMEN

Genome wide association studies show there is a genetic component to severe COVID-19. We find evidence that the genome-wide genetic association signal with severe COVID-19 is correlated with that of systemic lupus erythematosus (SLE), having formally tested this using genetic correlation analysis by LD score regression. To identify the shared associated loci and gain insight into the shared genetic effects, using summary level data we performed meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regression and functional annotation. This identified multiple loci shared between the two traits, some of which exert opposing effects. The locus with most evidence of shared association is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analyses suggest that several loci with reciprocal effects between the two traits have a role in the defense response pathway, adding to the evidence that SLE risk alleles are protective against infection.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Lupus Eritematoso Sistémico , Humanos , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , COVID-19/genética , Lupus Eritematoso Sistémico/genética , Enfermedades Autoinmunes/genética , Polimorfismo de Nucleótido Simple
7.
Medicine (Baltimore) ; 101(39): e30782, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36181103

RESUMEN

Apolipoprotein E alleles have been associated with both Alzheimer's disease (AD) and intracerebral hemorrhage (ICH). In addition, ICH is associated with a markedly high risk of subsequent dementia compared to other subtypes of stroke. We sought to evaluate if other genetic markers for AD were also associated with ICH. We examined whether published AD risk single nucleotide polymorphisms (SNPs) and haplotypes were associated with ICH utilizing genome-wide association study data from 2 independent studies (genetic and environmental risk factors for hemorrhagic stroke [GERFHS] study and genetics of cerebral hemorrhage with anticoagulation [GOCHA]). Analyses included evaluation by location of ICH. GERFHS and GOCHA cohorts contained 745 ICH cases and 536 controls for analysis. The strongest association was on 1q32 near Complement receptor type 1 (CR1), where rs6701713 was associated with all ICH (P = .0074, odds ratio [OR] = 2.07) and lobar ICH (P = .0073, OR = 2.80). The 51 most significant 2-SNP haplotypes associated with lobar ICH were identified within the Clusterin (CLU) gene. We identified that variation within CR1 and CLU, previously identified risk factors for AD, and are associated with an increased risk for ICH driven primarily by lobar ICH. Previous work implicated CR1 and CLU in cerebral amyloid clearance, the innate immune system, and cellular stress response.


Asunto(s)
Enfermedad de Alzheimer , Polimorfismo de Nucleótido Simple , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Anticoagulantes , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/genética , Clusterina/genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Incidencia , Factores de Riesgo
8.
Physiol Genomics ; 54(6): 206-219, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35467982

RESUMEN

Transcriptomic analysis in metabolically active tissues allows a systems genetics approach to identify causal genes and networks involved in metabolic disease. Outbred heterogeneous stock (HS) rats are used for genetic mapping of complex traits, but to-date, a systems genetics analysis of metabolic tissues has not been done. We investigated whether adiposity-associated genes and gene coexpression networks in outbred heterogeneous stock (HS) rats overlap those found in humans. We analyzed RNAseq data from adipose tissue of 415 male HS rats, correlated these transcripts with body weight (BW) and compared transcriptome signatures to two human cohorts: the "African American Genetics of Metabolism and Expression" and "Metabolic Syndrome in Men." We used weighted gene coexpression network analysis to identify adiposity-associated gene networks and mediation analysis to identify genes under genetic control whose expression drives adiposity. We identified 554 orthologous "consensus genes" whose expression correlates with BW in the rat and with body mass index (BMI) in both human cohorts. Consensus genes fell within eight coexpressed networks and were enriched for genes involved in immune system function, cell growth, extracellular matrix organization, and lipid metabolic processes. We identified 19 consensus genes for which genetic variation may influence BW via their expression, including those involved in lipolysis (e.g., Hcar1), inflammation (e.g., Rgs1), adipogenesis (e.g., Tmem120b), or no previously known role in obesity (e.g., St14 and Ms4a6a). Strong concordance between HS rat and human BW/BMI associated transcripts demonstrates translational utility of the rat model, while identification of novel genes expands our knowledge of the genetics underlying obesity.


Asunto(s)
Redes Reguladoras de Genes , Obesidad , Transcriptoma , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Perfilación de la Expresión Génica , Humanos , Masculino , Obesidad/genética , Ratas
9.
JAMA Netw Open ; 5(3): e221103, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35289861

RESUMEN

Introduction: Intracerebral hemorrhage (ICH) is the most severe subtype of stroke. Its mortality rate is high, and most survivors experience significant disability. Objective: To assess primary patient risk factors associated with mortality and neurologic disability 3 months after ICH in a large, racially and ethnically balanced cohort. Design, Setting, and Participants: This cohort study included participants from the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study, which prospectively recruited 1000 non-Hispanic White, 1000 non-Hispanic Black, and 1000 Hispanic patients with spontaneous ICH to study the epidemiological characteristics and genomics associated with ICH. Participants included those with uniform data collection and phenotype definitions, centralized neuroimaging review, and telephone follow-up at 3 months. Analyses were completed in November 2021. Exposures: Patient demographic and clinical characteristics as well as hospital event and imaging variables were examined, with characteristics meeting P < .20 considered candidates for a multivariate model. Elements included in the ICH score were specifically analyzed. Main Outcomes and Measures: Individual characteristics were screened for association with 3-month outcome of neurologic disability or mortality, as assessed by a modified Rankin Scale (mRS) score of 4 or greater vs 3 or less under a logistic regression model. A total of 25 characteristics were tested in the final model, which minimized the Akaike information criterion. Analyses were repeated removing individuals who had withdrawal of care. Results: A total of 2568 patients (mean [SD] age, 62.4 [14.7] years; 1069 [41.6%] women and 1499 [58.4%] men) had a 3-month outcome determination available, including death. The final logistic model had a significantly higher area under the receiver operating characteristics curve (C = 0.88) compared with ICH score alone (C = 0.76; P < .001). Among characteristics associated with neurologic disability and mortality were larger log ICH volume (OR, 2.74; 95% CI, 2.36-3.19; P < .001), older age (OR per 1-year increase, 1.04; 95% CI, 1.02-1.05; P < .001), pre-ICH mRS score (OR, 1.62; 95% CI, 1.41-1.87; P < .001), lobar location (OR, 0.22; 95% CI, 0.16-0.30; P < .001), and presence of infection (OR, 1.85; 95% CI, 1.42-2.41; P < .001). Conclusions and Relevance: The findings of this cohort study validate ICH score elements and suggest additional baseline and interim patient characteristics were associated with variation in 3-month outcome.


Asunto(s)
Hemorragia Cerebral , Accidente Cerebrovascular , Estudios de Cohortes , Femenino , Humanos , Grupos Raciales , Factores de Riesgo
10.
Mol Metab ; 54: 101342, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563731

RESUMEN

OBJECTIVE: Identify and characterize circulating metabolite profiles associated with adiposity to inform precision medicine. METHODS: Untargeted plasma metabolomic profiles in the Insulin Resistance Atherosclerosis Family Study (IRASFS) Mexican American cohort (n = 1108) were analyzed for association with anthropometric (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR) and computed tomography measures (visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; visceral-to-subcutaneous ratio, VSR) of adiposity. Genetic data, inclusive of genome-wide array-based genotyping, whole exome sequencing (WES) and whole genome sequencing (WGS), were evaluated to identify the genetic contributors. Phenotypic and genetic association signals were replicated across ancestries. Transcriptomic data were analyzed to explore the relationship between genetic and metabolomic data. RESULTS: A partially characterized metabolite, tentatively named metabolonic lactone sulfate (X-12063), was consistently associated with BMI, WC, WHR, VAT, and SAT in IRASFS Mexican Americans (PMA <2.02 × 10-27). Trait associations were replicated in IRASFS African Americans (PAA < 1.12 × 10-07). Expanded analyses revealed associations with multiple phenotypic measures of cardiometabolic health, e.g. insulin sensitivity (SI), triglycerides (TG), diastolic blood pressure (DBP) and plasminogen activator inhibitor-1 (PAI-1) in both ancestries. Metabolonic lactone sulfate levels were heritable (h2 > 0.47), and a significant genetic signal at the ZSCAN25/CYP3A5 locus (PMA = 9.00 × 10-41, PAA = 2.31 × 10-10) was observed, highlighting a putative functional variant (rs776746, CYP3A5∗3). Transcriptomic analysis in the African American Genetics of Metabolism and Expression (AAGMEx) cohort supported the association of CYP3A5 with metabolonic lactone sulfate levels (PFDR = 6.64 × 10-07). CONCLUSIONS: Variant rs776746 is associated with a decrease in the transcript levels of CYP3A5, which in turn is associated with increased metabolonic lactone sulfate levels and poor cardiometabolic health.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Lactonas/metabolismo , Obesidad/metabolismo , Sulfatos/metabolismo , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
JAMA Netw Open ; 4(8): e2121921, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34424302

RESUMEN

Importance: Black and Hispanic individuals have an increased risk of intracerebral hemorrhage (ICH) compared with their White counterparts, but no large studies of ICH have been conducted in these disproportionately affected populations. Objective: To examine the prevalence, odds, and population attributable risk (PAR) percentage for established and novel risk factors for ICH, stratified by ICH location and racial/ethnic group. Design, Setting, and Participants: The Ethnic/Racial Variations of Intracerebral Hemorrhage Study was a case-control study of ICH among 3000 Black, Hispanic, and White individuals who experienced spontaneous ICH (1000 cases in each group). Recruitment was conducted between September 2009 and July 2016 at 19 US sites comprising 42 hospitals. Control participants were identified through random digit dialing and were matched to case participants by age (±5 years), sex, race/ethnicity, and geographic area. Data analyses were conducted from January 2019 to May 2020. Main Outcomes and Measures: Case and control participants underwent a standardized interview, physical measurement for body mass index, and genotyping for the ɛ2 and ɛ4 alleles of APOE, the gene encoding apolipoprotein E. Prevalence, multivariable adjusted odds ratio (OR), and PAR percentage were calculated for each risk factor in the entire ICH population and stratified by racial/ethnic group and by lobar or nonlobar location. Results: There were 1000 Black patients (median [interquartile range (IQR)] age, 57 [50-65] years, 425 [42.5%] women), 1000 Hispanic patients (median [IQR] age, 58 [49-69] years; 373 [37.3%] women), and 1000 White patients (median [IQR] age, 71 [59-80] years; 437 [43.7%] women). The mean (SD) age of patients with ICH was significantly lower among Black and Hispanic patients compared with White patients (eg, lobar ICH: Black, 62.2 [15.2] years; Hispanic, 62.5 [15.7] years; White, 71.0 [13.3] years). More than half of all ICH in Black and Hispanic patients was associated with treated or untreated hypertension (PAR for treated hypertension, Black patients: 53.6%; 95% CI, 46.4%-59.8%; Hispanic patients: 46.5%; 95% CI, 40.6%-51.8%; untreated hypertension, Black patients: 45.5%; 95% CI, 39.%-51.1%; Hispanic patients: 42.7%; 95% CI, 37.6%-47.3%). Lack of health insurance also had a disproportionate association with the PAR percentage for ICH in Black and Hispanic patients (Black patients: 21.7%; 95% CI, 17.5%-25.7%; Hispanic patients: 30.2%; 95% CI, 26.1%-34.1%; White patients: 5.8%; 95% CI, 3.3%-8.2%). A high sleep apnea risk score was associated with both lobar (OR, 1.68; 95% CI, 1.36-2.06) and nonlobar (OR, 1.62; 95% CI, 1.37-1.91) ICH, and high cholesterol was inversely associated only with nonlobar ICH (OR, 0.60; 95% CI, 0.52-0.70); both had no interactions with race and ethnicity. In contrast to the association between the ɛ2 and ɛ4 alleles of APOE and ICH in White individuals (eg, presence of APOE ɛ2 allele: OR, 1.84; 95% CI, 1.34-2.52), APOE alleles were not associated with lobar ICH among Black or Hispanic individuals. Conclusions and Relevance: This study found sleep apnea as a novel risk factor for ICH. The results suggest a strong contribution from inadequately treated hypertension and lack of health insurance to the disproportionate burden and earlier onset of ICH in Black and Hispanic populations. These findings emphasize the importance of addressing modifiable risk factors and the social determinants of health to reduce health disparities.


Asunto(s)
Hemorragia Cerebral/etnología , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/genética , Minorías Étnicas y Raciales/estadística & datos numéricos , Etnicidad/estadística & datos numéricos , Predisposición Genética a la Enfermedad , Factores Raciales/estadística & datos numéricos , Negro o Afroamericano/etnología , Negro o Afroamericano/genética , Negro o Afroamericano/estadística & datos numéricos , Anciano , Estudios de Casos y Controles , Etnicidad/genética , Femenino , Hispánicos o Latinos/genética , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Estados Unidos/epidemiología , Estados Unidos/etnología , Población Blanca/etnología , Población Blanca/genética , Población Blanca/estadística & datos numéricos
12.
Ann Rheum Dis ; 80(6): 782-787, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33455918

RESUMEN

OBJECTIVES: To determine if the polymorphism encoding the Arg206Cys substitution in DNASE1L3 explains the association of the DNASE1L3/PXK gene locus with systemic lupus erythematosus (SLE) and to examine the effect of the Arg206Cys sequence change on DNASE1L3 protein function. METHODS: Conditional analysis for rs35677470 was performed on cases and controls with European ancestry from the SLE Immunochip study, and genotype and haplotype frequencies were compared. DNASE1L3 protein levels were measured in cells and supernatants of HEK293 cells and monocyte-derived dendritic cells expressing recombinant and endogenous 206Arg and 206Cys protein variants. RESULTS: Conditional analysis on rs35677470 eliminated the SLE risk association signal for lead single-nucleotide polymorphisms (SNPs) rs180977001 and rs73081554, which are found to tag the same risk haplotype as rs35677470. The modest effect sizes of the SLE risk genotypes (heterozygous risk OR=1.14 and homozygous risk allele OR=1.68) suggest some DNASE1L3 endonuclease enzyme function is retained. An SLE protective signal in PXK (lead SNP rs11130643) remained following conditioning on rs35677470. The DNASE1L3 206Cys risk variant maintained enzymatic activity, but secretion of the artificial and endogenous DNASE1L3 206Cys protein was substantially reduced. CONCLUSIONS: SLE risk association in the DNASE1L3 locus is dependent on the missense SNP rs35677470, which confers a reduction in DNASE1L3 protein secretion but does not eliminate its DNase enzyme function.


Asunto(s)
Endodesoxirribonucleasas/genética , Lupus Eritematoso Sistémico , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Células HEK293 , Haplotipos , Humanos , Lupus Eritematoso Sistémico/genética , Mutación Missense , Polimorfismo de Nucleótido Simple
13.
Hypertension ; 76(6): 1717-1724, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33100049

RESUMEN

Intensive blood pressure control decreases the rate of cardiovascular events by >25% compared with standard blood pressure control. We sought to determine whether the decrease in cardiovascular events seen with intensive blood pressure control is associated with an increased rate of other causes of hospitalization. This is a post hoc analysis of SPRINT (Systolic Blood Pressure Intervention Trial) in 9361 adult participants with hypertension and elevated cardiovascular risk. Participants were randomly assigned to an intensive or standard systolic blood pressure goal (<120 or <140 mm Hg, respectively). The primary outcome was hospitalization rates per 100 person-years for hospitalizations not associated with SPRINT primary events. After excluding hospitalizations linked to SPRINT primary events, there were 4678 participants with a rate of 19.70 hospitalizations per 100 person-years, compared with 4683 participants with a rate of 19.65 (P=0.37). Equivalence testing shows that these hospitalization rates were statistically equivalent at the P=0.05 level. Of those with hospitalizations, >1 hospitalization was seen in 38.8% of intensive arm participants and 41.9% of standard arm participants (P=0.08). The mean cumulative count of nonprimary event hospitalizations was comparable between the two arms. The most common causes of hospitalization were cardiovascular (23.6%) followed by injuries, including bone and joint therapeutic procedures (15.7%), infections (12.0%), and nervous systems disorders (10.7%). No categories of hospitalization were statistically more common in the intensive arm compared with the standard arm. Thus, the decrease in cardiovascular events seen with intensive blood pressure control is not associated with an increased rate of other causes of hospitalization. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT01206062.


Asunto(s)
Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Hospitalización/estadística & datos numéricos , Hipertensión/tratamiento farmacológico , Anciano , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Femenino , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Factores de Riesgo , Resultado del Tratamiento
14.
Diabetes ; 69(12): 2779-2793, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32928872

RESUMEN

Decline in insulin sensitivity due to dysfunction of adipose tissue (AT) is one of the earliest pathogenic events in type 2 diabetes. We hypothesize that differential DNA methylation (DNAm) controls insulin sensitivity and obesity by modulating transcript expression in AT. Integrating AT DNAm profiles with transcript profile data measured in a cohort of 230 African Americans (AAs) from the African American Genetics of Metabolism and Expression cohort, we performed cis-expression quantitative trait methylation (cis-eQTM) analysis to identify epigenetic regulatory loci for glucometabolic trait-associated transcripts. We identified significantly associated cytosine-guanine dinucleotide regions for 82 transcripts (false discovery rate [FDR]-P < 0.05). The strongest eQTM locus was observed for the proopiomelanocortin (POMC; ρ = -0.632, P = 4.70 × 10-27) gene. Epigenome-wide association studies (EWAS) further identified 155, 46, and 168 cytosine-guanine dinucleotide regions associated (FDR-P < 0.05) with the Matsuda index, SI, and BMI, respectively. Intersection of EWAS, transcript level to trait association, and eQTM results, followed by causal inference test identified significant eQTM loci for 23 genes that were also associated with Matsuda index, SI, and/or BMI in EWAS. These associated genes include FERMT3, ITGAM, ITGAX, and POMC In summary, applying an integrative multiomics approach, our study provides evidence for DNAm-mediated regulation of gene expression at both previously identified and novel loci for many key AT transcripts influencing insulin resistance and obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Negro o Afroamericano , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Adulto , Biología Computacional , Femenino , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Obesidad/genética , Obesidad/metabolismo , Transcriptoma
15.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32967914

RESUMEN

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , Caracteres Sexuales , delta-5 Desaturasa de Ácido Graso , Femenino , Genotipo , Humanos , Masculino , Fosforilación Oxidativa , Factores de Transcripción/metabolismo
16.
Circ Genom Precis Med ; 12(7): e002338, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31306060

RESUMEN

BACKGROUND: Genome-wide association studies have identified multiple loci associated with stroke. However, the specific stroke subtypes affected, and whether loci influence both ischemic and hemorrhagic stroke, remains unknown. For loci associated with stroke, we aimed to infer the combination of stroke subtypes likely to be affected, and in doing so assess the extent to which such loci have homogeneous effects across stroke subtypes. METHODS: We performed Bayesian multinomial regression in 16 664 stroke cases and 32 792 controls of European ancestry to determine the most likely combination of stroke subtypes affected for loci with published genome-wide stroke associations, using model selection. Cases were subtyped under 2 commonly used stroke classification systems, TOAST (Trial of Org 10172 Acute Stroke Treatment) and causative classification of stroke. All individuals had genotypes imputed to the Haplotype Reference Consortium 1.1 Panel. RESULTS: Sixteen loci were considered for analysis. Seven loci influenced both hemorrhagic and ischemic stroke, 3 of which influenced ischemic and hemorrhagic subtypes under both TOAST and causative classification of stroke. Under causative classification of stroke, 4 loci influenced both small vessel stroke and intracerebral hemorrhage. An EDNRA locus demonstrated opposing effects on ischemic and hemorrhagic stroke. No loci were predicted to influence all stroke subtypes in the same direction, and only one locus (12q24) was predicted to influence all ischemic stroke subtypes. CONCLUSIONS: Heterogeneity in the influence of stroke-associated loci on stroke subtypes is pervasive, reflecting differing causal pathways. However, overlap exists between hemorrhagic and ischemic stroke, which may reflect shared pathobiology predisposing to small vessel arteriopathy. Stroke is a complex, heterogeneous disorder requiring tailored analytic strategies to decipher genetic mechanisms.


Asunto(s)
Accidente Cerebrovascular/genética , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Estudios de Casos y Controles , Europa (Continente) , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad
17.
Stroke ; 50(8): 2044-2049, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238829

RESUMEN

Background and Purpose- Clinical trials in spontaneous intracerebral hemorrhage (ICH) have used volume cutoffs as inclusion criteria to select populations in which the effects of interventions are likely to be the greatest. However, optimal volume cutoffs for predicting poor outcome in deep locations (thalamus versus basal ganglia) are unknown. Methods- We conducted a 2-phase study to determine ICH volume cutoffs for poor outcome (modified Rankin Scale score of 4-6) in the thalamus and basal ganglia. Cutoffs with optimal sensitivity and specificity for poor outcome were identified in the ERICH ([Ethnic/Racial Variations of ICH] study; derivation cohort) using receiver operating characteristic curves. The cutoffs were then validated in the ATACH-2 trial (Antihypertensive Treatment of Acute Cerebral Hemorrhage-2) by comparing the c-statistic of regression models for outcome (including dichotomized volume) in the validation cohort. Results- Of the 3000 patients enrolled in ERICH, 1564 (52%) had deep ICH, of whom 1305 (84%) had complete neuroimaging and outcome data (660 thalamic and 645 basal ganglia hemorrhages). Receiver operating characteristic curve analysis identified 8 mL in thalamic (area under the curve, 0.79; sensitivity, 73%; specificity, 78%) and 18 mL in basal ganglia ICH (area under the curve, 0.79; sensitivity, 70%; specificity, 83%) as optimal cutoffs for predicting poor outcome. The validation cohort included 834 (84%) patients with deep ICH and complete neuroimaging data enrolled in ATACH-2 (353 thalamic and 431 basal ganglia hemorrhages). In thalamic ICH, the c-statistic of the multivariable outcome model including dichotomized ICH volume was 0.80 (95% CI, 0.75-0.85) in the validation cohort. For basal ganglia ICH, the c-statistic was 0.81 (95% CI, 0.76-0.85) in the validation cohort. Conclusions- Optimal hematoma volume cutoffs for predicting poor outcome in deep ICH vary by the specific deep brain nucleus involved. Utilization of location-specific volume cutoffs may improve clinical trial design by targeting deep ICH patients that will obtain maximal benefit from candidate therapies.


Asunto(s)
Hemorragia Cerebral/patología , Hematoma/patología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Selección de Paciente , Pronóstico , Valores de Referencia
18.
Diabetes ; 68(7): 1508-1522, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010960

RESUMEN

Insulin resistance (IR) is a harbinger of type 2 diabetes (T2D) and partly determined by genetic factors. However, genetically regulated mechanisms of IR remain poorly understood. Using gene expression, genotype, and insulin sensitivity data from the African American Genetics of Metabolism and Expression (AAGMEx) cohort, we performed transcript-wide correlation and expression quantitative trait loci (eQTL) analyses to identify IR-correlated cis-regulated transcripts (cis-eGenes) in adipose tissue. These IR-correlated cis-eGenes were tested in the European ancestry individuals in the Metabolic Syndrome in Men (METSIM) cohort for trans-ethnic replication. Comparison of Matsuda index-correlated transcripts in AAGMEx with the METSIM study identified significant correlation of 3,849 transcripts, with concordant direction of effect for 97.5% of the transcripts. cis-eQTL for 587 Matsuda index-correlated genes were identified in both cohorts. Enoyl-CoA hydratase domain-containing 3 (ECHDC3) was the top-ranked Matsuda index-correlated cis-eGene. Expression levels of ECHDC3 were positively correlated with Matsuda index, and regulated by cis-eQTL, rs34844369 being the top cis-eSNP in AAGMEx. Silencing of ECHDC3 in adipocytes significantly reduced insulin-stimulated glucose uptake and Akt Ser473 phosphorylation. RNA sequencing analysis identified 691 differentially expressed genes in ECHDC3-knockdown adipocytes, which were enriched in γ-linolenate biosynthesis, and known IR genes. Thus, our studies elucidated genetic regulatory mechanisms of IR and identified genes and pathways in adipose tissue that are mechanistically involved in IR.


Asunto(s)
Tejido Adiposo/metabolismo , Enoil-CoA Hidratasa/genética , Resistencia a la Insulina/genética , Adipocitos/metabolismo , Negro o Afroamericano/genética , Western Blotting , Biología Computacional , Genotipo , Técnicas de Genotipaje , Humanos , Sitios de Carácter Cuantitativo/genética , Población Blanca/genética
19.
Neurosurgery ; 84(6): E304-E310, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30011018

RESUMEN

BACKGROUND: Patients with spontaneous intracerebral hemorrhage (ICH) are predisposed to venous thromboembolic (VTE) complications, such as deep vein thrombosis and pulmonary embolism. OBJECTIVE: To evaluate, in a multicenter, retrospective cohort study, the rate of VTE complications in ICH patients during acute hospitalization, identify potential risk factors, and assess their association with functional outcome. METHODS: We retrospectively analyzed prospectively collected data from 19 centers and 41 sites that participated in the Ethnic/Racial Variations of Intracerebral Hemorrhage study, from August 2010 to February 2016. We compared ICH patients with VTE complications to those without VTE complications. Statistical analyses were performed to determine predictors of VTE complications and poor outcome (modified Rankin Scale ≥ 4) at discharge and 3-mo follow-up. RESULTS: Of the 2902 ICH patients who were eligible for analysis, 87 (3.0%) had VTE complications: 57 (2.0%) had only deep vein thrombosis, 19 (0.7%) had only pulmonary embolism, and 11 (0.4%) had both. In the multivariable logistic regression analysis, a prior history of VTE (odds ratio [OR] = 6.8; P < .0001), intubation (OR = 4.0; P < .0001), and presence of IVH (OR = 1.8; P = .0157) were independent predictors of VTE complications. After controlling for ICH volume and location, IVH, age, and presenting Glasgow Coma Scale, the occurrence of VTE complications was an independent predictor of poor outcome at discharge (OR = 2.9; P = .002) and 3-mo follow-up (OR = 2.1; P = .02). CONCLUSION: Although VTE complications are uncommon after ICH, they are associated with significantly worse outcomes. Further studies will be needed to determine the optimal treatment regimen for the prevention and treatment of VTE complications in ICH patients.


Asunto(s)
Hemorragia Cerebral/complicaciones , Tromboembolia Venosa/etiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Estudios Retrospectivos , Factores de Riesgo
20.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096841

RESUMEN

BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combined with a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomic marks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedades Autoinmunes/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Enfermedades Autoinmunes/patología , Sitios de Unión , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Intrones/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...