Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 690, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330378

RESUMEN

Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

2.
Environ Sci Technol ; 37(24): 5589-96, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14717168

RESUMEN

We conducted batch-reactor experiments to measure the reductive dissolution of pyrolusite-coated (beta-MnO2) quartz by Fe(II) under conditions representative of an acid mine-drainage subsurface plume. The results reveal that reductive dissolution rates were initially rapid but declined considerably as Fe(III)(aq), a product of the reductive-dissolution reaction, was removed from solution by heterogeneous precipitation. The inhibition of reductive-dissolution was attributed to blocking of the beta-MnO2 surface sites by the Fe(III)(s) precipitate. Calculations of a simple model that accounts for the effects of Fe(III)(s) precipitate formation on reductive dissolution rates closely match temporal changes in Mn(II), Fe(II), and Fe(II) concentrations measured in 10 experiments, distinguished on the basis of the initial Fe(II)-to-Mn(IV) mole ratio and the initial Fe(III)(aq) concentration. The model-data comparisons reveal that the initial reaction rate on a clean beta-MnO2 surface exceeds the long-term reaction rate by 3 orders of magnitude, highlighting the importance of linking Fe(III) precipitation with the reductive dissolution of beta-MnO2 by Fe(II).


Asunto(s)
Hierro/química , Óxido de Magnesio/química , Modelos Teóricos , Purificación del Agua/métodos , Precipitación Química , Concentración de Iones de Hidrógeno , Minería , Oxidación-Reducción
3.
Environ Sci Technol ; 36(7): 1613-9, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12004787

RESUMEN

A series of gas (vapor)-advecting water-unsaturated column experiments using a low organic content (f(oc)) silica sand was conducted to determine mass distributions of chlorinated-volatile hydrophobic organic compounds (C-VHOCs) in a natural sorbent system. C-VHOCs used were trichloroethene (TCE), tetrachloroethene (PCE), chlorobenzene (CB), and 1,3-dichlorobenzene (DCB). Four volumetric water contents (theta(w) = 0.07, 0.12, 0.17, 0.20) and several influent gas-phase C-VHOC (solute) concentrations were considered. The method of temporal first moments was applied to complete breakthrough curve data to determine total C-VHOC gas-phase retardation and associated gas-phase C-VHOC mass fraction. Results were compared to an equilibrium partitioning advective-dispersive formulation of total gas-phase retardation. Literature-derived values of Henry's law constants and independent measurements of gas/water interface areal extent and interface phase adsorption allowed quantification of C-VHOC mass fractions in the aqueous and gas/water interface phases. Unaccounted C-VHOC mass, derived from comparison of measured C-VHOC retardation to independent phase prediction, was attributed to solid-phase sorption. Results indicate that for all conditions tested, gas/water interfacial adsorption exhibited only a small effect on C-VHOC vapor retardation (accounting for < or = 10% of the total C-VHOC distributions). Solid-phase association was the dominant uptake mechanism, accounting for 46-91% of the total C-VHOC mass in the porous system. Evaluation of the solid-phase C-VHOC uptake results in terms of a modified form of the Dubinin-Radushkevich (DR) isotherm equation provided strong evidence supporting the mechanism of pore-filling in this natural, low f(oc) sorbent.


Asunto(s)
Hidrocarburos Clorados/química , Modelos Teóricos , Contaminantes del Suelo/análisis , Solventes/química , Adsorción , Gases , Dióxido de Silicio , Volatilización , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...