Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(40): eadm9801, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39356761

RESUMEN

How eukaryotic ribosomes traverse messenger RNA (mRNA) leader sequences to search for protein-synthesis start sites remains one of the most mysterious aspects of translation and its regulation. While the search process is conventionally described by a linear "scanning" model, its exquisitely dynamic nature has restricted detailed mechanistic study. Here, we observed single Saccharomyces cerevisiae ribosomal scanning complexes in real time, finding that they scan diverse mRNA leaders at a rate of 10 to 20 nt s-1. We show that specific binding of a protein to its mRNA leader sequence substantially arrests scanning. Conversely, impairing scanning-complex guanosine 5'-triphosphate hydrolysis results in native start-site bypass. Our results illustrate an mRNA-centric, kinetically controlled regulatory model where the ribosomal pre-initiation complex amplifies a nuanced energetic landscape to regulate scanning and start-site selection fidelity.


Asunto(s)
ARN Mensajero , Ribosomas , Saccharomyces cerevisiae , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Imagen Individual de Molécula/métodos , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Guanosina Trifosfato/metabolismo
2.
Nat Commun ; 12(1): 328, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436566

RESUMEN

While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Genoma Bacteriano , ARN de Transferencia/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , Aminoacilación , Anticodón/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Hidrólisis , Metilación , Modelos Moleculares , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
3.
Int J Mol Sci ; 20(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137816

RESUMEN

The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Transcripción Genética
4.
Nucleic Acids Res ; 45(19): 11043-11055, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977553

RESUMEN

In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA