Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Dev Biol ; 59(1-3): 141-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26374535

RESUMEN

Members of the inhibitor of apoptosis (IAP) family control several critical aspects of innate immunity, cell death, and tumorigenesis. Small molecule antagonists that target specific IAP oncoproteins, primarily cIAP1 and cIAP2, but potentially also XIAP and Livin, modulate distinct immune signal transduction pathways that can lead to an increased sensitivity of tumors cells to cytokine-mediated apoptosis. These antagonists are based on the structure of an endogenous cellular IAP inhibitor called Smac. Smac is normally sequestered within the mitochondria and is released into the cytoplasm upon cell death stimuli, thereby overcoming the anti-apoptotic action of the IAPs. The therapeutic usefulness of recombinant tumoricidal cytokines to treat cancer patients is principally limited due to their unacceptable adverse side effects. Therefore, investigators have sought to develop alternative regimens that do not rely on exogenously delivered death ligands. These approaches include the stimulation of the immune system with oncolytic virus-based agents or Toll-like receptor agonists in combination with Smac mimetics. Similarly, preclinical combination immunotherapy studies reveal that recombinant interferon synergizes with Smac mimetics to kill cancer. This strategy opens up new therapeutic avenues for anti-cancer therapy by modulating specific immune-mediated death pathways employing unique dual-pronged combinatorial approaches.


Asunto(s)
Apoptosis/inmunología , Inmunoterapia/métodos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/terapia , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Citocinas/inmunología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interferón alfa-2 , Interferón-alfa/uso terapéutico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cancer Cell ; 28(2): 210-24, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26212250

RESUMEN

Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.


Asunto(s)
Neoplasias/virología , Virus Oncolíticos/fisiología , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neoplasias/irrigación sanguínea , Neoplasias/terapia , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/virología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Interferencia de ARN , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Virus Vaccinia/fisiología
3.
Nat Commun ; 6: 6410, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25817275

RESUMEN

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.


Asunto(s)
Efecto Espectador/efectos de los fármacos , Citocinas/efectos de los fármacos , Interferón Tipo I/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Viroterapia Oncolítica , Virus Oncolíticos , ARN Mensajero/efectos de los fármacos , Infecciones por Rhabdoviridae/inmunología , Moduladores de Tubulina/farmacología , Albendazol/farmacología , Animales , Bencimidazoles/farmacología , Efecto Espectador/inmunología , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Colchicina/farmacología , Citocinas/inmunología , Células HT29 , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , Nocodazol/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , Rhabdoviridae , Células Vero , Vinblastina/análogos & derivados , Vinblastina/farmacología , Vinorelbina
4.
Clin Cancer Res ; 19(14): 3832-43, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23714728

RESUMEN

PURPOSE: Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. EXPERIMENTAL DESIGN: Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. RESULTS: Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. CONCLUSION: Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Rhabdoviridae/fisiología , Traslado Adoptivo , Animales , Trasplante de Médula Ósea , Vacunas contra el Cáncer , Línea Celular Tumoral , Supervivencia Celular , Chlorocebus aethiops , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Desnudos , Trasplante de Neoplasias , Medicina de Precisión , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Células Vero
5.
Mol Ther ; 20(9): 1791-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22760544

RESUMEN

Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSV's extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Melanoma Experimental/prevención & control , Melanoma Experimental/terapia , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/terapia , Vesiculovirus/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/administración & dosificación , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Terapia Genética/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Inmunización , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Neoplasias Cutáneas/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Vero , Vesiculovirus/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...