Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1281: 341882, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38783736

RESUMEN

BACKGROUND: Cyanide anion can be found in foodstuffs, tobacco smoke and a variety of types of waters, mainly originating from anthropogenic activities. Due to its highly toxic nature, several agencies have established limits for cyanide levels in water. Additionally, monitoring cyanide levels in biological samples, such as blood and urine, is crucial for obtaining clinical information about the health condition of patients. Therefore, there is a pressing need for the development of simple, cost-effective, and reliable analytical methods capable of quantifying cyanide at low concentrations. RESULTS: This study presents a novel analytical method for the selective and sensitive determination of cyanide based on analyte volatilization, pre-concentration via single-drop microextraction (SDME) using a selective reagent, and colorimetric quantification using a paper-based analytical device. For this, 10 mL of a liquid sample was acidified with phosphoric acid and the generated HCN was collected using a single drop of 3 µL of a palladium dimethylglyoximate solution (Pd (DMG)22-) positioned in the flask headspace using a syringe. The reaction of Pd (DMG)22- leads to the formation of Pd(CN)42- and the demasking of the organic ligand. After 15 min of extraction time, the reagent drop was added to a paper-based analytical device that has been previously impregnated with 3 µL of nickel chloride, resulting in the formation of a red precipitate of nickel (II) dimethylglyoximate. Digital images of the paper-based device were captured and the red channel (R) was used for quantification purposes. Under optimized conditions, the method demonstrates a suitable linear relation (r2 > 0.99) ranging from 26 to 286 µg L-1 and a limit of detection of 5 µg L-1. SIGNIFICANCE: As a proof of concept, cyanide levels were quantified in water and urine samples using this method. The proposed approach offers high sensitivity and selectivity while requiring only a small volume of reagents. Furthermore, it exhibits a high degree of portability for in-situ applications.


Asunto(s)
Cianuros , Níquel , Papel , Níquel/química , Cianuros/análisis , Cianuros/orina , Microextracción en Fase Líquida/métodos , Colorimetría , Humanos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA