Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 27(2): 251-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17241967

RESUMEN

Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Fotosíntesis/fisiología , Plantones/crecimiento & desarrollo , Temperatura , Madera/crecimiento & desarrollo , Biomasa , Eucalyptus/anatomía & histología , Eucalyptus/fisiología , Plantones/anatomía & histología , Plantones/fisiología , Madera/anatomía & histología , Xilema/crecimiento & desarrollo
2.
Tree Physiol ; 26(1): 35-42, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16203712

RESUMEN

Wood density influences both the physiological function and economic value of tree stems. We examined the relationship between phosphorus (P) supply and stem wood density of Eucalyptus grandis Hill ex Maiden seedlings grown with varying soil P additions and determined how changes in wood anatomy and biomass partitioning affect the relationship. Plant height, stem diameter and total biomass increased by 400-500% with increasing P supply. Stem wood density decreased sharply from 520 to 380 kg m(-3) as P supply increased to 70 mg P kg(soil) (-1). Further increases in P supply to 1000 mg P kg(soil) (-1) had no effect on wood density. The increase in wood density at low soil P supply arose principally from enhanced secondary wall thickening of stem fiber cells. Cell wall thickness increased from 3.6 to 4.5 microm as soil P supply decreased. Because fiber cell diameter was independent of soil P (12 microm +/- 0.3), the proportion of the stem occupied by cell wall material increased as P supply declined. The enhanced secondary wall thickening of stem fiber cells at low P supply was not associated with changes in whole-plant biomass partitioning. Instead, low P supply appeared to alter biomass partitioning within the stem in favor of secondary wall thickening. Thus, increased wood density in E. grandis seedlings grown at low P soil supply was associated with inhibited stem cambial activity, resulting in an increased proportion of photoassimilates available for secondary wall thickening of fiber cells.


Asunto(s)
Eucalyptus/anatomía & histología , Fósforo/provisión & distribución , Tallos de la Planta/anatomía & histología , Plantones/anatomía & histología , Madera/anatomía & histología , Eucalyptus/crecimiento & desarrollo , Suelo/análisis , Madera/citología
3.
J Exp Bot ; 52(364): 2127-33, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11604451

RESUMEN

Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.


Asunto(s)
Adaptación Fisiológica , Brassica/crecimiento & desarrollo , Suelo/análisis , Fenómenos Biomecánicos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Transducción de Señal , Factores de Tiempo
4.
Plant Physiol ; 115(1): 15-22, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12223789

RESUMEN

The influence of elevated CO2 on the development of the shoot apex and on subsequent vegetative growth and grain yield was investigated using rice (Oryza sativa L. cv Jarrah) grown in flooded soil at either 350 or 700 [mu]L CO2 L-1. At 8 d after planting (DAP), elevated CO2 increased the height and diameter of the apical dome and lengths of leaf primordia and tiller buds but had no effect on their numbers. By 16 DAP, there were five tiller buds in the apex at 700 [mu]L CO2 L-1 compared with only three tiller buds at 350 [mu]L CO2 L-1. These changes in development of the shoot apex at high CO2 were forerunners to faster development of the vegetative shoot at elevated CO2 between 11 and 26 DAP as evidenced by increases in the relative growth rates of the shoot and tillers. Accelerated development at high CO2 was responsible for the 42% increase in tiller number at the maximum tillering stage and the 57% enhancement of grain yield at the final harvest. The link between high CO2 effects on development during the first 15 DAP and final tiller number and grain yield was demonstrated by delaying exposure of plants to high CO2 for 15 d. The delay totally inhibited the tillering response to high CO2, and the increase in grain yield of 20% arose from a greater number of grains per panicle. Consequently, it can be concluded that accelerated development in the shoot apex early in development is crucial for obtaining maximum increases in grain yield at elevated atmospheric CO2 concentrations.

5.
Plant Physiol ; 108(4): 1471-1477, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12228556

RESUMEN

The relationship between leaf blade elongation rates (LER) and sucrose-phosphate synthase (SPS) activity was investigated at different times during ontogeny of rice (Oryza sativa L. cv Jarrah) grown in flooded soil at either 350 or 700 [mu]L CO2 L-1. High CO2 concentrations increased LER of expanding blades and in vivo activity (Vlimiting) SPS activity of expanded blades during the early vegetative stage (21 d after planting [DAP]), when tiller number was small and growing blades were strong carbohydrate sinks. Despite a constant light environment, there was a distinct diurnal pattern in LER, Vlimiting SPS activity, and concentration of soluble sugars, with an increase in the early part of the light period and a decrease later in the light period. The strong correlation (r = 0.65) between LER and Vlimiting SPS activity over the diurnal cycle indicated that SPS activity played an important role in controlling blade growth. The higher Vlimiting SPS activity at elevated CO2 at 21 DAP was caused by an increase in the activation state of the enzyme rather than an increase in Vmax. Fructose and glucose accumulated to a greater extent than sucrose at high CO2 and may have been utilized for synthesis of cell-wall components, contributing to higher specific leaf weight. By the mid-tillering stage (42 DAP), CO2 enrichment enhanced Vlimiting and Vmax activities of source blades. Nevertheless, LER was depressed by high CO2, probably because tillers were stronger carbohydrate sinks than growing blades.

6.
Plant Physiol ; 92(4): 977-82, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16667414

RESUMEN

Pinus radiata D. Don (half-sib families 20010 and 20062) and Pinus caribaea var hondurensis (an open-pollinated family) were grown for 49 weeks at seven levels of phosphorus and at CO(2) concentrations of either 340 or 660 microliters per liter, to establish if the phosphorus requirements differed between the CO(2) concentrations and if mycorrhizal associations were affected. When soil phosphorus availability was low, phosphorus uptake was increased by elevated CO(2). This may have been related to changes in mycorrhizal competition. When the phosphorus concentration in the youngest fully expanded needles was above 600 milligrams per kilogram the shoot weight of all pine families was greater at high CO(2) due to increases in rates of photosynthesis. More dry weight was partitioned to the stems of P. radiata family 20010 and P. caribaea. At foliar phosphorus concentrations above 1000 milligrams per kilogram (P. radiata) and 700 milligrams per kilogram (P. caribaea), growth did not increase at 340 microliters of CO(2) per liter. Soluble sugar levels in the same needles mirrored the growth response, but the starch concentration declined with increasing phosphorus. At 660 microliters of CO(2) per liter, shoot weight and soluble sugar concentrations were still increasing up to a foliar P concentration of 1800 milligrams per kilogram for P. radiata and 1600 milligrams per kilogram for P. caribaea. The starch concentrations did not decline. These results indicate that higher foliar phosphorus concentrations are required to realize the maximum growth potential of pines at elevated CO(2).

7.
Plant Physiol ; 86(4): 1108-15, 1988 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16666040

RESUMEN

Osmotic adjustment occurred during drought in expanded leaves of sunflowers (Helianthus annuus var Hysun 30) which had been continuously exposed to 660 microliters CO(2) per liter or had been previously acclimated to drought. The effect was greatest when the treatments were combined and was negligible in nonacclimated plants grown at 340 microliters CO(2) per liter. The concentrations of ethanol soluble sugars and potassium increased during drought but they did not account for the osmotic adjustment. The delay in the decline in conductance and relative water content and in the loss of structural integrity with increasing drought was dependent on the degree of osmotic adjustment. Where it was greatest, conductance fell from 5.8 millimeters per second on the first day of drought to 1.3 millimeters per second on the fourth day and was at approximately the same level on the eighth day. The relative water content remained constant at 85% for three days and fell to 36% on the sixth day. There was no evidence of leaf desiccation even on the eighth day. In contrast, the conductance of leaves showing minimal adjustment fell rapidly after the first day of drought and was negligible after the fourth, at which time the relative water content was 36%. By the sixth day of drought, areas near the margins of the leaves were desiccating and the plants did not recover upon rewatering. Despite the differences in the rate of change of conductance and relative water content during drought, photosynthetic electron transport activity, inferred from measurements of chlorophyll a fluorescence in vivo and PSII activity of isolated thylakoids, remained functional until desiccation occurred.

8.
Plant Physiol ; 81(2): 423-9, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16664832

RESUMEN

Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO(2) per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (F(O)) was increased and induced fluorescence ([F(P)-F(I)]/F(O)) was reduced. The effect was greatest in the undroughted plants grown at 660 mul CO(2) L(-1). By week 22 at 330 mul CO(2) L(-1) acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 mul CO(2) L(-1). The light saturated rate of photosynthesis of needles with adequate P was higher at 660 mul CO(2) L(-1) than at 330 mul CO(2) L(-1), whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO(2) concentration. The average growth increase due to CO(2) enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 mul CO(2) L(-1), there was a reduction in the maximal rate of quenching of fluorescence (R(Q)) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 mul CO(2) L(-1) this response was eliminated showing that CO(2) enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO(2) enrichment was 37% in drought stressed plants and 19% in unstressed plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...