Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
Eur J Hum Genet ; 28(10): 1446-1458, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32541681

RESUMEN

Variations in the Forkhead Box G1 (FOXG1) gene cause FOXG1 syndrome spectrum, including the congenital variant of Rett syndrome, characterized by early onset of regression, Rett-like and jerky movements, and cortical visual impairment. Due to the largely unknown pathophysiological mechanisms downstream the impairment of this transcriptional regulator, a specific treatment is not yet available. Since both haploinsufficiency and hyper-expression of FOXG1 cause diseases in humans, we reasoned that adding a gene under nonnative regulatory sequences would be a risky strategy as opposed to a genome editing approach where the mutated gene is reversed into wild-type. Here, we demonstrate that an adeno-associated viruses (AAVs)-coupled CRISPR/Cas9 system is able to target and correct FOXG1 variants in patient-derived fibroblasts, induced Pluripotent Stem Cells (iPSCs) and iPSC-derived neurons. Variant-specific single-guide RNAs (sgRNAs) and donor DNAs have been selected and cloned together with a mCherry/EGFP reporter system. Specific sgRNA recognition sequences were inserted upstream and downstream Cas9 CDS to allow self-cleavage and inactivation. We demonstrated that AAV serotypes vary in transduction efficiency depending on the target cell type, the best being AAV9 in fibroblasts and iPSC-derived neurons, and AAV2 in iPSCs. Next-generation sequencing (NGS) of mCherry+/EGFP+ transfected cells demonstrated that the mutated alleles were repaired with high efficiency (20-35% reversion) and precision both in terms of allelic discrimination and off-target activity. The genome editing strategy tested in this study has proven to precisely repair FOXG1 and delivery through an AAV9-based system represents a step forward toward the development of a therapy for Rett syndrome.


Asunto(s)
Sistemas CRISPR-Cas , Factores de Transcripción Forkhead/genética , Edición Génica/métodos , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/genética , Adulto , Transdiferenciación Celular , Células Cultivadas , Técnicas de Reprogramación Celular/métodos , Preescolar , Dependovirus/genética , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Terapia Genética/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Síndrome de Rett/patología , Síndrome de Rett/terapia
4.
Eur J Hum Genet ; 28(9): 1231-1242, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32332872

RESUMEN

Rett syndrome is a progressive neurodevelopmental disorder which affects almost exclusively girls, caused by variants in MECP2 gene. Effective therapies for this devastating disorder are not yet available and the need for tight regulation of MECP2 expression for brain to properly function makes gene replacement therapy risky. For this reason, gene editing with CRISPR/Cas9 technology appears as a preferable option for the development of new therapies. To study the disease, we developed and characterized a human neuronal model obtained by genetic reprogramming of patient-derived primary fibroblasts into induced Pluripotent Stem Cells. This cellular model represents an important source for our studies, aiming to correct MECP2 variants in neurons which represent the primarily affected cell type. We engineered a gene editing toolkit composed by a two-plasmid system to correct a hotspot missense variant in MECP2, c.473 C > T (p.(Thr158Met)). The first construct expresses the variant-specific sgRNA and the Donor DNA along with a fluorescent reporter system. The second construct brings Cas9 and targets for auto-cleaving, to avoid long-term Cas9 expression. NGS analysis on sorted cells from four independent patients demonstrated an exceptionally high editing efficiency, with up to 80% of HDR and less than 1% of indels in all patients, outlining the relevant potentiality of the approach for Rett syndrome therapy.


Asunto(s)
Edición Génica , Proteína 2 de Unión a Metil-CpG/genética , Mutación Missense , Reparación del ADN por Recombinación , Síndrome de Rett/genética , Sistemas CRISPR-Cas , Células Cultivadas , Reprogramación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Terapia Genética/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/citología , Neuronas/metabolismo , Síndrome de Rett/terapia
5.
Eur J Hum Genet ; 28(4): 480-490, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31754267

RESUMEN

Alport syndrome (AS) is an inherited genetic disorder characterized by range of alterations from glomerular basement membrane abnormalities up to end-stage renal disease. Pathogenic variants in the collagen α3, α4, and α5 encoding genes are causative both of the autosomal dominant and of the X-linked forms of AS. Podocytes are the only renal cells that are able to produce the COL(IV)a3-a4a5 heterotrimer. We have previously demonstrated how it is possible to isolate podocyte-lineage cells from urine of patients, providing an easily accessible cellular model closer to the podocytes' physiological conditions. Taking advantage of disease-relevant cell lines, we employed a two-plasmid approach in order to achieve a beneficial and stable variant-specific correction using CRISPR/Cas9 genome editing. One plasmid carries a Donor DNA and a reporter system mCherry/GFP to track the activity of Cas9 in cells. The other plasmid carries a self-cleaving SpCas9 and the variant-specific sgRNA. We have analyzed two stable podocyte-lineage cell lines, harboring a variant in the X-linked COL4A5 (p.(Gly624Asp)) and in the autosomal COL4A3 gene (p.(Gly856Glu)). We have achieved reversion of variants greater than 40% with undesired insertions/deletions lower than 15%. Overall, we have demonstrated a new gene therapy approach directly on patients' cells, key players of Alport pathogenesis, and we have reverted COL4 causative variants towards the wild type state. These results, in combination with preclinical models, could open new frontiers in the management and the treatment of the disorder.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Edición Génica/métodos , Nefritis Hereditaria/genética , Podocitos/metabolismo , Adulto , Autoantígenos/metabolismo , Sistemas CRISPR-Cas , Linaje de la Célula , Células Cultivadas , Colágeno Tipo IV/metabolismo , Femenino , Terapia Genética/métodos , Humanos , Mutación , Nefritis Hereditaria/patología , Nefritis Hereditaria/terapia , Podocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA