Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Breast Cancer ; 24(4): 368-375.e2, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38443227

RESUMEN

BACKGROUND: Breast cancer, particularly the estrogen receptor positive (ER+) subtype, remains a leading cause of cancer-related death among women. Endocrine therapy is the most effective treatment for ER+ breast cancer; however, the development of resistance presents a significant challenge. This study explored the role of the breast cancer antiestrogen resistance 4 (BCAR4) gene as a potential driver of resistance and a pivotal biomarker in breast cancer. PATIENTS AND METHODS: The researchers undertook a comprehensive analysis of 1743 patients spanning 6 independent cohorts. They examined the association of BCAR4 expression with patient outcomes across all breast cancer types and the PAM50 molecular subtypes. The relationship between elevated BCAR4 expression and resistance to endocrine therapy including AIs, the prevailing standard-of-care for endocrine therapy, was also investigated. RESULTS: This meta-analysis corroborated the link between BCAR4 expression and adverse outcomes as well as resistance to endocrine therapy in breast cancer. Notably, BCAR4 expression is clinically significant in luminal A and B subtypes. Additionally, an association between BCAR4 expression and resistance to AI treatment was discerned. CONCLUSION: This study expands on previous findings by demonstrating that BCAR4 expression is associated with resistance to newer therapies. The identification of patients with intrinsic resistance to hormone therapy is crucial to avoid ineffective treatment strategies. These findings contribute to our understanding of endocrine therapy resistance in breast cancer and could potentially guide the development of more effective treatment strategies.


Asunto(s)
Antineoplásicos Hormonales , Biomarcadores de Tumor , Neoplasias de la Mama , Resistencia a Antineoplásicos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Receptores de Estrógenos/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante
2.
NAR Cancer ; 5(4): zcad055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023733

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.

3.
NAR Cancer ; 5(2): zcad021, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37213253

RESUMEN

Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.

4.
Mol Cancer Res ; 20(10): 1481-1488, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852383

RESUMEN

Chromosomal rearrangements often result in active regulatory regions juxtaposed upstream of an oncogene to generate an expressed gene fusion. Repeated activation of a common downstream partner-with differing upstream regions across a patient cohort-suggests a conserved oncogenic role. Analysis of 9,638 patients across 32 solid tumor types revealed an annotated long noncoding RNA (lncRNA), Breast Cancer Anti-Estrogen Resistance 4 (BCAR4), was the most prevalent, uncharacterized, downstream gene fusion partner occurring in 11 cancers. Its oncogenic role was confirmed using multiple cell lines with endogenous BCAR4 gene fusions. Furthermore, overexpressing clinically prevalent BCAR4 gene fusions in untransformed cell lines was sufficient to induce an oncogenic phenotype. We show that the minimum common region to all gene fusions harbors an open reading frame that is necessary to drive proliferation. IMPLICATIONS: BCAR4 gene fusions represent an underappreciated class of gene fusions that may have biological and clinical implications across solid tumors.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fusión Génica , Neoplasias/genética , Oncogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
NAR Cancer ; 2(3): zcaa015, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32803163

RESUMEN

Recent studies show that annotated long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) encode for stable, functional peptides that contribute to human development and disease. To systematically discover lncRNAs and circRNAs encoding peptides, we performed a comprehensive integrative analysis of mass spectrometry-based proteomic and transcriptomic sequencing data from >900 patients across nine cancer types. This enabled us to identify 19,871 novel peptides derived from 8,903 lncRNAs. Further, we exploited open reading frames overlapping the backspliced region of circRNAs to identify 3,238 peptides that are uniquely derived from 2,834 circRNAs and not their corresponding linear RNAs. Collectively, our pan-cancer proteogenomic analysis will serve as a resource for evaluating the coding potential of lncRNAs and circRNAs that could aid future mechanistic studies exploring their function in cancer.

7.
ACS Infect Dis ; 5(5): 750-758, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30582687

RESUMEN

An estimated 240 million are chronically infected with hepatitis B virus (HBV), which can lead to liver disease, cirrhosis, and hepatocellular carcinoma. Currently, HBV treatment options include only nucleoside reverse transcriptase inhibitors and the immunomodulatory agent interferon alpha, and these treatments are generally not curative. New treatments with novel mechanisms of action, therefore, are highly desired for HBV therapy. The viral core protein (Cp) has gained attention as a possible therapeutic target because of its vital roles in the HBV life cycle. Several classes of capsid assembly effectors (CAEs) have been described in detail, and these compounds all increase capsid assembly rate but inhibit HBV replication by different mechanisms. In this study, we have developed a thermal shift-based screening method for CAE discovery and characterization, filling a much-needed gap in high-throughput screening methods for capsid-targeting molecules. Using this approach followed by cell-based screening, we identified the compound HF9C6 as a CAE with low micromolar potency against HBV replication. HF9C6 caused large multicapsid aggregates when capsids were assembled in vitro and analyzed by transmission electron microscopy. Interestingly, when HBV-expressing cells were treated with HF9C6, Cp was excluded from cell nuclei, suggesting that this compound may inhibit nuclear entry of Cp and capsids. Furthermore, mutational scanning of Cp suggested that HF9C6 binds the known CAE binding pocket, indicating that key Cp-compound interactions within this pocket have a role in determining the CAE mechanism of action.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Proteínas del Núcleo Viral/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Células Hep G2 , Virus de la Hepatitis B/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
8.
mSphere ; 3(2)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29669885

RESUMEN

Heteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assembly in vitro have been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cp in vitro and causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level.IMPORTANCE Despite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/química , Virus de la Hepatitis B/efectos de los fármacos , Cuerpos de Inclusión Viral/química , Agregado de Proteínas/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Cápside/química , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Técnica del Anticuerpo Fluorescente , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Humanos , Proteínas Recombinantes/química , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
10.
J Clin Immunol ; 35(2): 119-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25516070

RESUMEN

PURPOSE: Combined immunodeficiency (CID) presents a unique challenge to clinicians. Two patients presented with the prior clinical diagnosis of common variable immunodeficiency (CVID) disorder marked by an early age of presentation, opportunistic infections, and persistent lymphopenia. Due to the presence of atypical clinical features, next generation sequencing was applied documenting RAG deficiency in both patients. METHODS: Two different genetic analysis techniques were applied in these patients including whole exome sequencing in one patient and the use of a gene panel designed to target genes known to cause primary immunodeficiency disorders (PIDD) in a second patient. Sanger dideoxy sequencing was used to confirm RAG1 mutations in both patients. RESULTS: Two young adults with a history of recurrent bacterial sinopulmonary infections, viral infections, and autoimmune disease as well as progressive hypogammaglobulinemia, abnormal antibody responses, lymphopenia and a prior diagnosis of CVID disorder were evaluated. Compound heterozygous mutations in RAG1 (1) c256_257delAA, p86VfsX32 and (2) c1835A>G, pH612R were documented in one patient. Compound heterozygous mutations in RAG1 (1) c.1566G>T, p.W522C and (2) c.2689C>T, p. R897X) were documented in a second patient post-mortem following a fatal opportunistic infection. CONCLUSION: Astute clinical judgment in the evaluation of patients with PIDD is necessary. Atypical clinical findings such as early onset, granulomatous disease, or opportunistic infections should support the consideration of atypical forms of late onset CID secondary to RAG deficiency. Next generation sequencing approaches provide powerful tools in the investigation of these patients and may expedite definitive treatments.


Asunto(s)
Inmunodeficiencia Variable Común/genética , Proteínas de Homeodominio/genética , Mutación , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/etiología , Biopsia , Preescolar , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/diagnóstico , Análisis Mutacional de ADN , Resultado Fatal , Femenino , Humanos , Inmunohistoquímica , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Linfopenia/diagnóstico , Linfopenia/etiología , Tomografía Computarizada por Rayos X , Adulto Joven
11.
Biotechniques ; 57(4): 204-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25312090

RESUMEN

Next-generation sequencing (NGS) of multigene panels performed for genetic clinical diagnostics requires 100% coverage of all targeted genes. In the genetic diagnostics laboratory, coverage gaps are typically filled with Sanger sequencing after NGS data are collected and analyzed. Libraries prepared using the hybridization-based custom capture HaloPlex method are covered at ~98% and include gaps in coverage because of the location of the restriction enzyme sites used for fragmentation and differences in the designed and actual library insert size. We describe a method for improving the coverage of HaloPlex libraries by generating a set of amplicons spanning known low-coverage regions that are pooled, indexed by sample, and sequenced together with the HaloPlex libraries. This approach reduces the number of post-NGS Sanger sequencing reactions required and complements any NGS library preparation method when complete gene coverage is necessary.


Asunto(s)
Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación de Ácido Nucleico/métodos , Biblioteca de Genes , Humanos
12.
Am J Med Genet A ; 164A(1): 17-28, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24259288

RESUMEN

Three related males presented with a newly recognized x-linked syndrome associated with neurodegeneration, cutaneous abnormalities, and systemic iron overload. Linkage studies demonstrated that they shared a haplotype on Xp21.3-Xp22.2 and exome sequencing was used to identify candidate variants. Of the segregating variants, only a PIGA mutation segregated with disease in the family. The c.328_330delCCT PIGA variant predicts, p.Leu110del (or c.1030_1032delCTT, p.Leu344del depending on the reference sequence). The unaffected great-grandfather shared his X allele with the proband but he did not have the PIGA mutation, indicating that the mutation arose de novo in his daughter. A single family with a germline PIGA mutation has been reported; affected males had a phenotype characterized by multiple congenital anomalies and severe neurologic impairment resulting in infantile lethality. In contrast, affected boys in the family described here were born without anomalies and were neurologically normal prior to onset of seizures after 6 months of age, with two surviving to the second decade. PIGA encodes an enzyme in the GPI anchor biosynthesis pathway. An affected individual in the family studied here was deficient in GPI anchor proteins on granulocytes but not erythrocytes. In conclusion, the PIGA mutation in this family likely causes a reduction in GPI anchor protein cell surface expression in various cell types, resulting in the observed pleiotropic phenotype involving central nervous system, skin, and iron metabolism.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación de Línea Germinal , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Sobrecarga de Hierro/genética , Proteínas de la Membrana/genética , Espasmos Infantiles/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Autopsia , Secuencia de Bases , Biopsia , Encéfalo/patología , Encéfalo/ultraestructura , Análisis Mutacional de ADN , Facies , Resultado Fatal , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Humanos , Lactante , Sobrecarga de Hierro/diagnóstico , Riñón/patología , Hígado/patología , Linfocitos/ultraestructura , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Piel/patología , Espasmos Infantiles/diagnóstico , Bazo/patología , Síndrome
13.
BMC Bioinformatics ; 14 Suppl 13: S2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24266885

RESUMEN

BACKGROUND: Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. METHODS: VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). RESULTS: To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. CONCLUSIONS: These data indicate that VarBin correctly classifies the majority of true variants as Bin 1 and Bin 3/4 contained only false positive variants. The "uncertain" Bin 2 contained both true and false positive variants. Future work will further differentiate the variants in Bin 2.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Análisis por Conglomerados , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Genoma/genética , Biblioteca Genómica , Heterocigoto , Humanos , Funciones de Verosimilitud , Masculino , Linaje , Valor Predictivo de las Pruebas , Programas Informáticos
14.
Dev Cell ; 27(4): 462-8, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286827

RESUMEN

Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo , Animales , Arabidopsis/metabolismo , Fluorescencia , Concentración de Iones de Hidrógeno , Ratones , Mutación/genética , Bombas de Protones , Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/genética
15.
Am J Hum Genet ; 93(5): 812-24, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24140114

RESUMEN

Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs(∗)7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853(∗)), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.


Asunto(s)
Inmunodeficiencia Variable Común/genética , Mutación de Línea Germinal , Subunidad p52 de NF-kappa B/genética , Transducción de Señal , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Línea Celular , Niño , Inmunodeficiencia Variable Común/patología , Modelos Animales de Enfermedad , Femenino , Pruebas Genéticas , Heterocigoto , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Microscopía Confocal , Datos de Secuencia Molecular , Subunidad p52 de NF-kappa B/metabolismo , Linaje , Fenotipo , Adulto Joven
16.
Expert Rev Mol Diagn ; 13(6): 529-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23895124

RESUMEN

AIMS: Next-generation sequencing is being implemented in the clinical laboratory environment for the purposes of candidate causal variant discovery in patients affected with a variety of genetic disorders. The successful implementation of this technology for diagnosing genetic disorders requires a rapid, user-friendly method to annotate variants and generate short lists of clinically relevant variants of interest. This report describes Omicia's Opal platform, a new software tool designed for variant discovery and interpretation in a clinical laboratory environment. The software allows clinical scientists to process, analyze, interpret and report on personal genome files. MATERIALS & METHODS: To demonstrate the software, the authors describe the interactive use of the system for the rapid discovery of disease-causing variants using three cases. RESULTS & CONCLUSION: Here, the authors show the features of the Opal system and their use in uncovering variants of clinical significance.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Mapeo Cromosómico , Genoma Humano , Proyecto Genoma Humano , Humanos , Medicina Molecular , Patología Molecular , Polimorfismo de Nucleótido Simple
17.
Arch Pathol Lab Med ; 137(3): 415-33, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22770468

RESUMEN

CONTEXT: Advances in sequencing technology with the commercialization of next-generation sequencing (NGS) has substantially increased the feasibility of sequencing human genomes and exomes. Next-generation sequencing has been successfully applied to the discovery of disease-causing genes in rare, inherited disorders. By necessity, the advent of NGS has fostered the concurrent development of bioinformatics approaches to expeditiously analyze the large data sets generated. Next-generation sequencing has been used for important discoveries in the research setting and is now being implemented into the clinical diagnostic arena. OBJECTIVE: To review the current literature on technical and bioinformatics approaches for exome and genome sequencing and highlight examples of successful disease gene discovery in inherited disorders. To discuss the challenges for implementing NGS in the clinical research and diagnostic arenas. DATA SOURCES: Literature review and authors' experience. CONCLUSIONS: Next-generation sequencing approaches are powerful and require an investment in infrastructure and personnel expertise for effective use; however, the potential for improvement of patient care through faster and more accurate molecular diagnoses is high.


Asunto(s)
Biología Computacional/métodos , Exoma/genética , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Biología Computacional/tendencias , Perfilación de la Expresión Génica/tendencias , Humanos , Análisis de Secuencia de ADN
19.
Clin Chem Lab Med ; 50(7): 1161-8, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22850020

RESUMEN

In the relatively short time frame since the introduction of next generation sequencing, it has become a method of choice for complex genomic research studies. As a paradigm shifting technology, we are now witnessing its translation into clinical diagnostic laboratories for patient care. Multi-gene panels for a variety of disorders are now available in several clinical laboratories based on targeted gene enrichment followed by next generation sequencing. Genome wide interrogation of protein coding regions, or exome sequencing, has been successfully and increasingly applied in the research setting for the elucidation of candidate genes and causal variants in individuals and families with a diversity of rare and complex genetic disorders. Based on this progress, exome sequencing is also beginning a translational process into clinical practice. However, introducing exome sequencing as a diagnostic modality poses new technical and bioinformatics challenges for clinical laboratories. In this review, we present technical and bioinformatics aspects of exome sequencing, describe representative examples from the literature of how exome sequencing has been used for candidate gene discovery, and discuss considerations for its clinical translation.


Asunto(s)
Exoma , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia de ADN/métodos , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Investigación Biomédica Traslacional
20.
Mol Biol Cell ; 21(23): 4057-60, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21115849

RESUMEN

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Historia del Siglo XX , Cuerpos Multivesiculares/genética , Mutación , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...