Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Res Microb Sci ; 6: 100238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745914

RESUMEN

Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.

2.
Curr Res Microb Sci ; 6: 100217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234431

RESUMEN

Oropouche virus (OROV) is an emerging vector-borne arbovirus found in South America that causes Oropouche fever, a febrile infection similar to dengue fever. It has a high epidemic potential, causing illness in over 500,000 cases diagnosed since the virus was first discovered in 1955. Currently, the prevention of human viral infection depends on vaccination, but availability for many viruses is limited, and they are classified as neglected viruses. At present, there are no vaccines or antiviral treatments available. An alternative approach to limiting the spread of the virus is to selectively disrupt viral replication mechanisms. Here, we demonstrate the inhibitory effect of acridones, which efficiently inhibited viral replication by 99.9 % in vitro. To evaluate possible mechanisms of action, we conducted tests with dsRNA, an intermediate in virus replication, as well as MD simulations, docking, and binding free energy analysis. The results showed a strong interaction between FAC21 and the OROV endonuclease, which possibly limits the interaction of viral RNA with other proteins. Therefore, our results suggest a dual mechanism of antiviral action, possibly caused by ds-RNA intercalation. In summary, our findings demonstrate that a new generation of antiviral drugs could be developed based on the selective optimization of molecules.

3.
Am J Trop Med Hyg ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226878

RESUMEN

Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi, and is transmitted mainly by the feces of contaminated triatomines. Knowledge of the biological, ecological, behavioral, genetic, taxonomic, and systematic aspects of these vectors can contribute to the planning of vector control programs, because all species are considered to be potential vectors of Chagas disease. Transcriptomic studies, in general, provided a new view of the physiology of triatomines (aiding in the knowledge of reproductive aspects of the hematophagy process and even the immune system and the sensory apparatus) and even contributed, as a new tool, to the taxonomy and systematics of these insects. Thus, we conducted a review of the transcriptomic studies on Chagas disease vectors.

4.
Am J Trop Med Hyg ; 104(6): 1973-1977, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33872207

RESUMEN

Chagas disease is an illness caused by the protozoan Trypanosoma cruzi that is distributed in 21 countries of Latin America. The main way of transmission of T. cruzi is through the feces of triatomines infected with the parasite. With technological advances came new technologies called omics. In the pre-genomic era, the omics science was based on cytogenomic studies of triatomines. With the Rhodnius prolixus genome sequencing project, new omics tools were applied to understand the organism at a systemic level and not just from a genomic point of view. Thus, the present review aims to put together the cytogenomic and genomic information available in the literature for Chagas disease vectors. Here, we review all studies related to cytogenomics and genomics of Chagas disease vectors, contributing to the direction of further research with these insect vectors, because it was evident that most studies focus on cytogenomic knowledge of the species. Given the importance of genomic studies, which contributed to the knowledge of taxonomy, systematics, as well as the vector's biology, the need to apply these techniques in other genera and species of Triatominae subfamily is emphasized.


Asunto(s)
Enfermedad de Chagas/parasitología , Cromosomas/genética , Genómica/métodos , Insectos Vectores/parasitología , Trypanosoma cruzi/genética , Animales , Enfermedad de Chagas/transmisión , Humanos , Filogenia , Rhodnius/parasitología , Triatoma/parasitología
5.
J Mol Graph Model ; 86: 35-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336451

RESUMEN

In this work we performed several in silico analyses to describe the relevant structural aspects of an enzyme N-Carbamoyl-d-amino acid amidohydrolase (d-NCAase) encoded on the genome of the Brazilian strain CPAC 15 (=SEMIA 5079) of Bradyrhizobium japonicum, a nonpathogenic species belonging to the order Rhizobiales. d-NCAase has wide applications particularly in the pharmaceutical industry, since it catalyzes the production of d-amino acids such as D-p-hydroxyphenylglycine (D-HPG), an intermediate in the synthesis of ß-lactam antibiotics. We applied a homology modelling approach and 50 ns of molecular dynamics simulations to predict the structure and the intersubunit interactions of this novel d-NCAase. Also, in order to evaluate the substrate binding site, the model was subjected to 50 ns of molecular dynamics simulations in the presence of N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) (a d-NCAase canonical substrate) and water-protein/water-substrate interactions analyses were performed. Overall, the structural analysis and the molecular dynamics simulations suggest that d-NCAase of B. japonicum CPAC-15 has a homodimeric structure in solution. Here, we also examined the substrate specificity of the catalytic site of our model and the interactions with water molecules into the active binding site were comprehensively discussed. Also, these simulations showed that the amino acids Lys123, His125, Pro127, Cys172, Asp174 and Arg176 are responsible for recognition of ligand in the active binding site through several chemical associations, such as hydrogen bonds and hydrophobic interactions. Our results show a favourable environment for a reaction of hydrolysis that transforms N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) into the active compound D-p-hydroxyphenylglycine (D-HPG). This work envisage the use of d-NCAase from the Brazilian Bradyrhizobium japonicum strain CPAC-15 (=SEMIA 5079) for the industrial production of D-HPG, an important intermediate for semi-synthesis of ß-lactam antibiotics such as penicillins, cephalosporins and amoxicillin.


Asunto(s)
Amidohidrolasas/química , Bradyrhizobium , Simulación de Dinámica Molecular , Conformación Proteica , Secuencia de Aminoácidos , Aminoácidos , Sitios de Unión , Bradyrhizobium/química , Bradyrhizobium/enzimología , Dominio Catalítico , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica
6.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1418-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286953

RESUMEN

Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Šand diffracted to a maximum resolution of 2.6 Å.


Asunto(s)
Proteínas de Artrópodos/química , Hidrolasas Diéster Fosfóricas/química , Venenos de Araña/enzimología , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA