Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7628, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223125

RESUMEN

The Permo-Triassic mass extinction was linked to catastrophic environmental changes and large igneous province (LIP) volcanism. In addition to the widespread marine losses, the Permo-Triassic event was the most severe terrestrial ecological crisis in Earth's history and the only known mass extinction among insects, but the cause of extinction on land remains unclear. In this study, high-resolution Hg concentration records and multiple-archive S-isotope analyses of sediments from the Junggar Basin (China) provide evidence of repeated pulses of volcanic-S (acid rain) and increased Hg loading culminating in a crisis of terrestrial biota in the Junggar Basin coeval with the interval of LIP emplacement. Minor S-isotope analyses are, however, inconsistent with total ozone layer collapse. Our data suggest that LIP volcanism repeatedly stressed end-Permian terrestrial environments in the ~300 kyr preceding the marine extinction locally via S-driven acidification and deposition of Hg, and globally via pulsed addition of CO2.


Asunto(s)
Extinción Biológica , Sedimentos Geológicos , Erupciones Volcánicas , China , Animales , Mercurio/análisis , Isótopos de Azufre/análisis
2.
Innovation (Camb) ; 5(3): 100618, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38638583

RESUMEN

Extinction selectivity determines the direction of macroevolution, especially during mass extinction; however, its driving mechanisms remain poorly understood. By investigating the physiological selectivity of marine animals during the Permian-Triassic mass extinction, we found that marine clades with lower O2-carrying capacity hemerythrin proteins and those relying on O2 diffusion experienced significantly greater extinction intensity and body-size reduction than those with higher O2-carrying capacity hemoglobin or hemocyanin proteins. Our findings suggest that animals with high O2-carrying capacity obtained the necessary O2 even under hypoxia and compensated for the increased energy requirements caused by ocean acidification, which enabled their survival during the Permian-Triassic mass extinction. Thus, high O2-carrying capacity may have been crucial for the transition from the Paleozoic to the Modern Evolutionary Fauna.

3.
Science ; 379(6632): 567-572, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758082

RESUMEN

Finely preserved fossil assemblages (lagerstätten) provide crucial insights into evolutionary innovations in deep time. We report an exceptionally preserved Early Triassic fossil assemblage, the Guiyang Biota, from the Daye Formation near Guiyang, South China. High-precision uranium-lead dating shows that the age of the Guiyang Biota is 250.83 +0.07/-0.06 million years ago. This is only 1.08 ± 0.08 million years after the severe Permian-Triassic mass extinction, and this assemblage therefore represents the oldest known Mesozoic lagerstätte found so far. The Guiyang Biota comprises at least 12 classes and 19 orders, including diverse fish fauna and malacostracans, revealing a trophically complex marine ecosystem. Therefore, this assemblage demonstrates the rapid rise of modern-type marine ecosystems after the Permian-Triassic mass extinction.


Asunto(s)
Organismos Acuáticos , Evolución Biológica , Biota , Fósiles , Animales , China , Extinción Biológica
4.
Sci Adv ; 9(7): eabq4082, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791190

RESUMEN

Massive carbon dioxide (CO2) emissions are widely assumed to be the driver of the end-Permian mass extinction (EPME). However, the rate of and total CO2 released, and whether the source changes with time, remain poorly understood, leaving a key question surrounding the trigger for the EPME unanswered. Here, we assimilate reconstructions of atmospheric Pco2 and carbonate δ13C in an Earth system model to unravel the history of carbon emissions and sources across the EPME. We infer a transition from a CO2 source with a thermogenic carbon isotopic signature associated with a slower emission rate to a heavier, more mantle-dominated volcanic source with an increased rate of emissions. This implies that the CO2 degassing style changed as the Siberian Traps emplacement evolved, which is consistent with geochemical proxy records. Carbon cycle feedbacks from terrestrial ecosystem disturbances may have further amplified the warming and the severity of marine extinctions.

5.
Sci Rep ; 12(1): 5195, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338189

RESUMEN

The Late Ordovician mass extinction (LOME, ca. 445 Ma; Hirnantian stage) is the second most severe biological crisis of the entire Phanerozoic. The LOME has been subdivided into two pulses (intervals), at the beginning and the ending of the Hirnantian glaciation, the LOMEI-1 and LOMEI-2, respectively. Although most studies suggest a rapid cooling and/or oceanic euxinia as major causes for this mass extinction, the driver of these environmental changes is still debated. As other Phanerozoic's mass extinctions, extensive volcanism may have been the potential trigger of the Hirnantian glaciation. Indirect evidence of intense volcanism comes from Hg geochemistry: peaks of Hg concentrations have been found before and during the LOME, and have all been attributed to global volcanism in origin. Here, we present high-resolution mercury (Hg) profiles in three study sections, from a shelf to slope transect, on the Yangtze Shelf Sea (South China) to address the origin of Hg anomalies across the Ordovician-Silurian (O-S) boundary. The results show Hg anomaly enrichments in the middle Katian, late Katian, the LOMEI-1 at the beginning of the Hirnantian glaciation, the LOMEI-2 in the late Hirnantian glaciation, and late Rhuddanian. The Hg anomaly enrichments during the middle-late Katian and late Rhuddanian would probably reflect a volcanic origin. We find two different controls on the recorded Hg anomalies during the extinction time: i.e., primarily volcanism for the Hg anomaly at the LOMEI-1 and euxinia for the Hg anomaly at the LOMEI-2. Expansion of euxinia at the LOMEI-1 would have been probably enhanced by volcanic fertilization via weathering of volcanic deposits during the Middle and late Katian, and combined with euxinia at the LOMEI-2 to finally be responsible for the two pulses of the LOME.


Asunto(s)
Extinción Biológica , Mercurio , Biodiversidad , China , Mercurio/análisis , Océanos y Mares
6.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580231

RESUMEN

The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U-Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.


Asunto(s)
Ecosistema , Animales , China , Cambio Climático , Dinosaurios/fisiología , Extinción Biológica , Sedimentos Geológicos/química , Humedad , Isótopos/química , Mercurio/química , Silicatos/química , Temperatura , Erupciones Volcánicas , Circonio/química
7.
Nat Commun ; 12(1): 5534, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545073

RESUMEN

Exceptional magmatic events coincided with the largest mass extinctions throughout Earth's history. Extensive degassing from organic-rich sediments intruded by magmas is a possible driver of the catastrophic environmental changes, which triggered the biotic crises. One of Earth's largest magmatic events is represented by the Central Atlantic Magmatic Province, which was synchronous with the end-Triassic mass extinction. Here, we show direct evidence for the presence in basaltic magmas of methane, generated or remobilized from the host sedimentary sequence during the emplacement of this Large Igneous Province. Abundant methane-rich fluid inclusions were entrapped within quartz at the end of magmatic crystallization in voluminous (about 1.0 × 106 km3) intrusions in Brazilian Amazonia, indicating a massive (about 7.2 × 103 Gt) fluxing of methane. These micrometre-sized imperfections in quartz crystals attest an extensive release of methane from magma-sediment interaction, which likely contributed to the global climate changes responsible for the end-Triassic mass extinction.

8.
J Nurs Manag ; 29(8): 2658-2673, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34369615

RESUMEN

AIM: The aim of this study is to describe the prevalence and reasons for non-nursing tasks as perceived by nurses. BACKGROUND: Four types of non-nursing tasks have been identified to date: (a) auxiliary; (b) administrative, (c) expected by allied health care professionals; and (d) medical. However, no studies on a large scale have been performed with the aim of identifying the prevalence of all of these non-nursing tasks, and factors promoting or hindering their occurrence, given that they represent a clear waste of nurses' time. METHODS: A cross-sectional study in 2017, following The Strengthening the Reporting of Observational studies. All active nurses registered in an Italian provincial Nursing Board (=1331) willing to participate were involved. A questionnaire survey exploring the nature of the nursing tasks performed in daily practice and the underlying reasons was administered via paper/pencil and e-mail. RESULTS: A total of 733 nurses participated of which 94.5% performed at least one type of non-nursing task, mainly administrative and auxiliary. Auxiliary tasks are less likely among nurses working in a community (odds ratio [OR] 0.43, 95% CI 0.29-0.63, p < .01) or in a residential (OR 0.41, 95% CI 0.23-0.72, p < .01) setting, in critical (OR 0.29, 95% CI 0.16-0.54, p < .01) or surgical (OR 0.37, 95% CI 0.19-0.75, p < .01) hospital settings, and when they deal with unexpected clinical events (OR 0.58, 95% CI 0.44-0.77, p < .01). Greater adequacy of nursing resources decreases the occurrence of auxiliary tasks (OR 0.98, 95% CI 0.97-0.99, p < .01), whereas the need to compensate for a lack of resources (OR 1.44, 95% CI 1.07-1.93, p < .01) increases it. CONCLUSIONS: Around one-third of shift time is devoted to non-nursing tasks; working in a hospital, in medical units, with lack of resources and with patients with predictable clinical conditions might increase the occurrence of auxiliary tasks. IMPLICATIONS FOR NURSING MANAGEMENT: Strategies to increase the time available for nursing care should consider the type of tasks performed by nurses, their antecedents and the value added to care in terms of patient' benefits.


Asunto(s)
Enfermeras y Enfermeros , Atención de Enfermería , Personal de Enfermería en Hospital , Estudios Transversales , Humanos , Prevalencia , Encuestas y Cuestionarios
9.
Sci Rep ; 11(1): 17339, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462517

RESUMEN

The Late Triassic Carnian Pluvial Episode (CPE) was a time of biological turnover and environmental perturbations. Within the CPE interval, C-isotope and sedimentary records indicate multiple pulses of depleted carbon into the atmosphere-ocean system linked to discrete enhancements of the hydrological cycle. Data suggest a similar cascade of events to other extinctions, including being potentially driven by emplacement of a large igneous province (LIP). The age of the Wrangellia LIP overlaps that of the CPE, but a direct link between volcanism and the pulsed CPE remains elusive. We present sedimentary Hg concentrations from Western Tethys successions to investigate volcanic activity through the previously established CPE global negative C-isotope excursions (NCIEs). Higher Hg concentrations and Hg/TOC are recorded just before and during NCIEs and siliciclastic inputs. The depositional settings suggest volcanic Hg inputs into the basins over the NCIEs rather than increases of Hg drawdown or riverine transport. Differences in Hg and Hg/TOC signals between the basins might be linked to coeval LIP style or the temporal resolution of the sedimentary successions. Overall, our new data provide support for a link between pulses of Wrangellia LIP volcanism, NCIEs, and humid phases that mark the CPE in the Western Tethys.

10.
Nat Commun ; 12(1): 2137, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837195

RESUMEN

The Permian-Triassic mass extinction was marked by a massive release of carbon into the ocean-atmosphere system, evidenced by a sharp negative carbon isotope excursion. Large carbon emissions would have increased atmospheric pCO2 and caused global warming. However, the magnitude of pCO2 changes during the PTME has not yet been estimated. Here, we present a continuous pCO2 record across the PTME reconstructed from high-resolution δ13C of C3 plants from southwestern China. We show that pCO2 increased from 426 +133/-96 ppmv in the latest Permian to 2507 +4764/-1193 ppmv at the PTME within about 75 kyr, and that the reconstructed pCO2 significantly correlates with sea surface temperatures. Mass balance modelling suggests that volcanic CO2 is probably not the only trigger of the carbon cycle perturbation, and that large quantities of 13C-depleted carbon emission from organic matter and methane were likely required during complex interactions with the Siberian Traps volcanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA