Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antib Ther ; 4(2): 109-122, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34396040

RESUMEN

As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here, we leverage our expertise in computational antibody engineering to rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV-2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody-induced virus activation or enhancement, we suggest application of NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.

2.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34358098

RESUMEN

Site-specific antibody conjugations generate homogeneous antibody-drug conjugates with high therapeutic index. However, there are limited examples for producing the site-specific conjugates with a drug-to-antibody ratio (DAR) greater than two, especially using engineered cysteines. Based on available Fc structures, we designed and introduced free cysteine residues into various antibody CH2 and CH3 regions to explore and expand this technology. The mutants were generated using site-directed mutagenesis with good yield and properties. Conjugation efficiency and selectivity were screened using PEGylation. The top single cysteine mutants were then selected and combined as double cysteine mutants for expression and further investigation. Thirty-six out of thirty-eight double cysteine mutants display comparable expression with low aggregation similar to the wild-type antibody. PEGylation screening identified seventeen double cysteine mutants with good conjugatability and high selectivity. PEGylation was demonstrated to be a valuable and efficient approach for quickly screening mutants for high selectivity as well as conjugation efficiency. Our work demonstrated the feasibility of generating antibody conjugates with a DAR greater than 3.4 and high site-selectivity using THIOMABTM method. The top single or double cysteine mutants identified can potentially be applied to site-specific antibody conjugation of cytotoxin or other therapeutic agents as a next generation conjugation strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...