RESUMEN
AIM: Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS: Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (H2DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS: G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION: These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.
Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Proteínas Proto-Oncogénicas c-akt , Animales , Endotelio Vascular , Estrógenos/metabolismo , Estrógenos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteínas de Unión al GTP/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Arterias Mesentéricas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuales , Transducción de Señal , Vasodilatadores/farmacologíaRESUMEN
Arterial endothelial dysfunction has been extensively studied in heart failure (HF). However, little is known about the adjustments shown by the venous system in this condition. Considering that inferior vena cava (VC) tone could influence cardiac performance and HF prognosis, the aim of the present study was to assess the VC and thoracic aorta (TA) endothelial function of HF-post-myocardial infarction (MI) rats, comparing both endothelial responses and signaling pathways developed. Vascular reactivity of TA and VC from HF post-MI and sham operated (SO) rats was assessed with a wire myograph, 4 weeks after coronary artery occlusion surgery. Nitric oxide (NO), H2O2 production and oxidative stress were evaluated in situ with fluorescent probes, while protein expression and dimer/monomer ratio was assessed by Western blot. VC from HF rats presented endothelial dysfunction, while TA exhibited higher acetylcholine (ACh)-induced vasodilation when compared with vessels from SO rats. TA exhibited increased ACh-induced NO production due to a higher coupling of endothelial and neuronal NO synthases isoforms (eNOS, nNOS), and enhanced expression of antioxidant enzymes. These adjustments, however, were absent in VC of HF post-MI rats, which exhibited uncoupled nNOS, oxidative stress and higher H2O2 bioavailability. Altogether, the present study suggests a differential regulation of endothelial function between VC and TA of HF post-MI rats, most likely due to nNOS uncoupling and compromised antioxidant defense.
Asunto(s)
Aorta Torácica/fisiopatología , Endotelio Vascular/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Óxido Nítrico Sintasa/metabolismo , Vena Cava Inferior/fisiopatología , Animales , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Infarto del Miocardio/complicaciones , Estrés Oxidativo , Ratas Wistar , Vena Cava Inferior/enzimologíaRESUMEN
AIM: Previous studies raise cyclooxygenase (COX) activation as a possible mechanism involved in the pathophysiology of ouabain-induced hypertension. We hypothesized that inhibition of COX-2 activity might prevent ouabain-induced vascular dysfunction and worsening of hypertension in spontaneously hypertensive rats (SHR). METHODS: SHR were exposed to ouabain or vehicle and treated or not with the selective COX-2 inhibitor nimesulide for 5 weeks. Systolic blood pressure was measured by plethysmography. Vascular reactivity by wire myograph and protein expression by Western-blot were assessed in mesenteric resistance arteries (MRA) of groups. Thromboxane A2 (TXA2) production by ELISA was evaluated in MRA supernatants of groups. RESULTS: Noradrenaline-induced maximal contraction (Emax) was greater in MRA from SHR receiving ouabain than those of vehicle group. In situ inhibition of COX-2, TXA2 synthase, or TP receptor reduced the Emax to noradrenaline in MRA of ouabain to vehicle levels. TXA2 production was higher in ouabain than in vehicle group. Ouabain enhanced expression of cytoplasmic tyrosine kinase Src (c-Src)/ERK1/2/COX-2/TXA2 synthase/TP receptor in SHR MRA, but did not change NFkB/iKB ratio. Anticontractile effect of nitric oxide (NO) was smaller in MRA from ouabain- than vehicle-treated SHR, as well as eNOS and nNOS expression. Nimesulide co-treatment prevented the ouabain-induced worsening of hypertension and noradrenaline MRA hypercontractility in SHR. CONCLUSION: Ouabain worsen hypertension and induce MRA hypercontractility in SHR associated with upregulated c-Src/ERK1/2/COX-2/TXA2 synthase/TXA2/TP receptor axis. These effects were prevented by COX-2 inhibition.
Asunto(s)
Hipertensión , Ouabaína , Animales , Presión Sanguínea , Ciclooxigenasa 2/metabolismo , Endotelio Vascular , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/prevención & control , Arterias Mesentéricas/metabolismo , Ouabaína/farmacología , Ratas , Ratas Endogámicas SHR , Vasoconstricción , VasodilataciónRESUMEN
Perivascular adipose tissue (PVAT) dysfunction is associated with vascular damage in cardiometabolic diseases. Although heart failure (HF)-induced endothelial dysfunction is associated with renin-angiotensin system (RAS) activation, no data have correlated this syndrome with PVAT dysfunction. Thus, the aim of the present study was to investigate whether the hyperactivation of the RAS in PVAT participates in the vascular dysfunction observed in rats with HF after myocardial infarction surgery. Wire myograph studies were carried out in thoracic aorta rings in the presence and absence of PVAT. An anticontractile effect of PVAT was observed in the rings of the control rats in the presence (33%) or absence (11%) of endothelium. Moreover, this response was substantially reduced in animals with HF (5%), and acute type 1 angiotensin II receptor (AT1R) and type 2 angiotensin II receptor (AT2R) blockade restored the anticontractile effect of PVAT. In addition, the angiotensin-converting enzyme 1 (ACE1) activity (26%) and angiotensin II levels (51%), as well as the AT1R and AT2R gene expression, were enhanced in the PVAT of rats with HF. Associated with these alterations, HF-induced lower nitric oxide bioavailability, oxidative stress and whitening of the PVAT, which suggests changes in the secretory function of this tissue. The ACE1/angiotensin II/AT1R and AT2R axes are involved in thoracic aorta PVAT dysfunction in rats with HF. These results suggest PVAT as a target in the pathophysiology of vascular dysfunction in HF and provide new perspectives for the treatment of this syndrome.
Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Animales , Aorta Torácica/patología , Disponibilidad Biológica , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Insuficiencia Cardíaca/complicaciones , Hemodinámica , Masculino , Modelos Biológicos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Peptidil-Dipeptidasa A/metabolismo , Ratas Wistar , Receptor de Angiotensina Tipo 1/metabolismo , VasoconstricciónRESUMEN
BACKGROUND: Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. METHODS/MAIN RESULTS: Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. CONCLUSIONS: Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.
Asunto(s)
Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Sistema Renina-Angiotensina , Angiotensina II/sangre , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Insuficiencia Cardíaca/fisiopatología , Pruebas de Función Cardíaca , Masculino , Peptidil-Dipeptidasa A/sangre , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas WistarRESUMEN
BACKGROUND: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NO(x)â»), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N(ε)-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NO(x)â» levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NO(x)â» levels were partially restored. CONCLUSION: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.