Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 123(47): 11623-31, 2001 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-11716717

RESUMEN

Rates of reduction of Os(III), Ru(III), and Re(I) by Cu(I) in His83-modified Pseudomonas aeruginosa azurins (M-Cu distance approximately 17 A) have been measured in single crystals, where protein conformation and surface solvation are precisely defined by high-resolution X-ray structure determinations: 1.7(8) x 10(6) s(-1) (298 K), 1.8(8) x 10(6) s(-1) (140 K), [Ru(bpy)2(im)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(bpy)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(phen)(3+)-]; 9.0(50) x 10(2) s(-1) (298 K), [Os(bpy)2(im)(3+)-]; 4.4(20) x 10(6) s(-1) (298 K), [Re(CO)3(phen)(+)] (bpy = 2,2'-bipyridine; im = imidazole; tpy = 2,2':6',2' '-terpyridine; phen = 1,10-phenanthroline). The time constants for electron tunneling in crystals are roughly the same as those measured in solution, indicating very similar protein structures in the two states. High-resolution structures of the oxidized (1.5 A) and reduced (1.4 A) states of Ru(II)(tpy)(phen)(His83)Az establish that very small changes in copper coordination accompany reduction but reveal a shorter axial interaction between copper and the Gly45 peptide carbonyl oxygen [2.6 A for Cu(II)] than had been recognized previously. Although Ru(bpy)2(im)(His83)Az is less solvated in the crystal, the reorganization energy for Cu(I) --> Ru(III) electron transfer falls in the range (0.6-0.8 eV) determined experimentally for the reaction in solution. Our work suggests that outer-sphere protein reorganization is the dominant activation component required for electron tunneling.


Asunto(s)
Azurina/química , Pseudomonas aeruginosa/metabolismo , Azurina/metabolismo , Sitios de Unión , Cobre/química , Cobre/metabolismo , Cristalización , Cristalografía por Rayos X , Transporte de Electrón , Modelos Moleculares , Osmio/química , Osmio/metabolismo , Oxidación-Reducción , Conformación Proteica , Pseudomonas aeruginosa/química , Renio/química , Renio/metabolismo , Rutenio/química , Rutenio/metabolismo
2.
Proc Natl Acad Sci U S A ; 98(22): 12420-5, 2001 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11606730

RESUMEN

Cytochromes P450 play key roles in drug metabolism and disease by oxidizing a wide variety of natural and xenobiotic compounds. High-resolution crystal structures of P450cam bound to ruthenium sensitizer-linked substrates reveal an open conformation of the enzyme that allows substrates to access the active center via a 22-A deep channel. Interactions of alkyl and fluorinated biphenyl linkers with the channel demonstrate the importance of exploiting protein dynamics for specific inhibitor design. Large changes in peripheral enzyme structure (F and G helices) couple to conformational changes in active center residues (I helix) implicated in proton pumping and dioxygen activation. Common conformational states among P450cam and homologous enzymes indicate that static and dynamic variability in the F/G helix region allows the 54 human P450s to oxidize thousands of substrates.


Asunto(s)
Alcanfor 5-Monooxigenasa/química , Rutenio/metabolismo , Sitios de Unión , Alcanfor 5-Monooxigenasa/metabolismo , Catálisis , Conformación Proteica
4.
Proc Natl Acad Sci U S A ; 98(9): 5002-6, 2001 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-11296248

RESUMEN

The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation-reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s(-1) for *Zn-cyt c --> Fe(III)-cyt c; 2000 s(-1) for Fe(II)-cyt c --> Zn-cyt c(+))] over a Zn-Fe distance of 24.1 A closely match those for intraprotein electron tunneling over similar donor-acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein-protein interface.


Asunto(s)
Grupo Citocromo c/química , Grupo Citocromo c/metabolismo , Transporte de Electrón , Animales , Cristalización , Cristalografía por Rayos X , Electrones , Hemo/química , Hemo/metabolismo , Enlace de Hidrógeno , Hierro/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Solventes , Atún , Agua/metabolismo , Zinc/metabolismo
5.
Nat Struct Biol ; 8(4): 353-60, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11276258

RESUMEN

To probe the structural basis for protein histidine kinase (PHK) catalytic activity and the prospects for PHK-specific inhibitor design, we report the crystal structures for the nucleotide binding domain of Thermotoga maritima CheA with ADP and three ATP analogs (ADPNP, ADPCP and TNP-ATP) bound with either Mg(2+) or Mn(2+). The conformation of ADPNP bound to CheA and related ATPases differs from that reported in the ADPNP complex of PHK EnvZ. Interactions of the active site with the nucleotide gamma-phosphate and its associated Mg(2+) ion are linked to conformational changes in an ATP-lid that could mediate recognition of the substrate domain. The inhibitor TNP-ATP binds CheA with its phosphates in a nonproductive conformation and its adenine and trinitrophenyl groups in two adjacent binding pockets. The trinitrophenyl interaction may be exploited for designing CheA-targeted drugs that would not interfere with host ATPases.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Thermotoga maritima/enzimología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Sitios de Unión , Cationes Bivalentes/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , Histidina Quinasa , Enlace de Hidrógeno , Magnesio/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Fosforilación , Inhibidores de Proteínas Quinasas , Estructura Terciaria de Proteína , Solventes
6.
Biochemistry ; 39(16): 4608-21, 2000 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-10769116

RESUMEN

Nitric oxide synthases (NOSs) catalyze two mechanistically distinct, tetrahydrobiopterin (H(4)B)-dependent, heme-based oxidations that first convert L-arginine (L-Arg) to N(omega)-hydroxy-L-arginine (NHA) and then NHA to L-citrulline and nitric oxide. Structures of the murine inducible NOS oxygenase domain (iNOS(ox)) complexed with NHA indicate that NHA and L-Arg both bind with the same conformation adjacent to the heme iron and neither interacts directly with it nor with H(4)B. Steric restriction of dioxygen binding to the heme in the NHA complex suggests either small conformational adjustments in the ternary complex or a concerted reaction of dioxygen with NHA and the heme iron. Interactions of the NHA hydroxyl with active center beta-structure and the heme ring polarize and distort the hydroxyguanidinium to increase substrate reactivity. Steric constraints in the active center rule against superoxo-iron accepting a hydrogen atom from the NHA hydroxyl in their initial reaction, but support an Fe(III)-peroxo-NHA radical conjugate as an intermediate. However, our structures do not exclude an oxo-iron intermediate participating in either L-Arg or NHA oxidation. Identical binding modes for active H(4)B, the inactive quinonoid-dihydrobiopterin (q-H(2)B), and inactive 4-amino-H(4)B indicate that conformational differences cannot explain pterin inactivity. Different redox and/or protonation states of q-H(2)B and 4-amino-H(4)B relative to H(4)B likely affect their ability to electronically influence the heme and/or undergo redox reactions during NOS catalysis. On the basis of these structures, we propose a testable mechanism where neutral H(4)B transfers both an electron and a 3,4-amide proton to the heme during the first step of NO synthesis.


Asunto(s)
Arginina/análogos & derivados , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Oxigenasas/metabolismo , Animales , Arginina/química , Arginina/metabolismo , Sitios de Unión , Biopterinas/química , Catálisis , Cristalografía por Rayos X , Dimerización , Hemo/metabolismo , Enlace de Hidrógeno , Hierro/metabolismo , Ratones , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/química , Conformación Proteica , Relación Estructura-Actividad
7.
EMBO J ; 18(22): 6260-70, 1999 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-10562538

RESUMEN

The oxygenase domain of the inducible nitric oxide synthase (iNOSox; residues 1-498) is a dimer that binds heme, L-arginine and tetrahydrobiopterin (H(4)B) and is the site for nitric oxide synthesis. We examined an N-terminal segment that contains a beta-hairpin hook, a zinc ligation center and part of the H(4)B-binding site for its role in dimerization, catalysis, and H(4)B and substrate interactions. Deletion mutagenesis identified the minimum catalytic core and indicated that an intact N-terminal beta-hairpin hook is essential. Alanine screening mutagenesis of conserved residues in the hook revealed five positions (K82, N83, D92, T93 and H95) where native properties were perturbed. Mutants fell into two classes: (i) incorrigible mutants that disrupt side-chain hydrogen bonds and packing interactions with the iNOSox C-terminus (N83, D92 and H95) and cause permanent defects in homodimer formation, H(4)B binding and activity; and (ii) reformable mutants that destabilize interactions of the residue main chain (K82 and T93) with the C-terminus and cause similar defects that were reversible with high concentrations of H(4)B. Heterodimers comprised of a hook-defective iNOSox mutant subunit and a full-length iNOS subunit were active in almost all cases. This suggests a mechanism whereby N-terminal hooks exchange between subunits in solution to stabilize the dimer.


Asunto(s)
Biopterinas/análogos & derivados , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Pterinas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Biopterinas/metabolismo , Bovinos , Dimerización , Drosophila , Humanos , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Óxido Nítrico Sintasa de Tipo II , Mutación Puntual , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría
8.
EMBO J ; 18(22): 6271-81, 1999 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-10562539

RESUMEN

Nitric oxide synthase oxygenase domains (NOS(ox)) must bind tetrahydrobiopterin and dimerize to be active. New crystallographic structures of inducible NOS(ox) reveal that conformational changes in a switch region (residues 103-111) preceding a pterin-binding segment exchange N-terminal beta-hairpin hooks between subunits of the dimer. N-terminal hooks interact primarily with their own subunits in the 'unswapped' structure, and two switch region cysteines (104 and 109) from each subunit ligate a single zinc ion at the dimer interface. N-terminal hooks rearrange from intra- to intersubunit interactions in the 'swapped structure', and Cys109 forms a self-symmetric disulfide bond across the dimer interface. Subunit association and activity are adversely affected by mutations in the N-terminal hook that disrupt interactions across the dimer interface only in the swapped structure. Residue conservation and electrostatic potential at the NOS(ox) molecular surface suggest likely interfaces outside the switch region for electron transfer from the NOS reductase domain. The correlation between three-dimensional domain swapping of the N-terminal hook and metal ion release with disulfide formation may impact inducible nitric oxide synthase (i)NOS stability and regulation in vivo.


Asunto(s)
Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Cisteína , Dimerización , Enlace de Hidrógeno , Sustancias Macromoleculares , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Programas Informáticos , Electricidad Estática
9.
Proc Natl Acad Sci U S A ; 96(23): 12987-90, 1999 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-10557259

RESUMEN

The ability to detect, characterize, and manipulate specific biomolecules in complex media is critical for understanding metabolic processes. Particularly important targets are oxygenases (cytochromes P450) involved in drug metabolism and many disease states, including liver and kidney dysfunction, neurological disorders, and cancer. We have found that Ru photosensitizers linked to P450 substrates specifically recognize submicromolar cytochrome P450(cam) in the presence of other heme proteins. In the P450:Ru-substrate conjugates, energy transfer to the heme dramatically accelerates the Ru-luminescence decay. The crystal structure of a P450(cam):Ru-adamantyl complex reveals access to the active center via a channel whose depth (Ru-Fe distance is 21 A) is virtually the same as that extracted from an analysis of the energy-transfer kinetics. Suitably constructed libraries of sensitizer-linked substrates could be employed to probe the steric and electronic properties of buried active sites.


Asunto(s)
Alcanfor 5-Monooxigenasa/metabolismo , Alcanfor 5-Monooxigenasa/química , Alcanfor 5-Monooxigenasa/genética , Transferencia de Energía , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis , Óptica y Fotónica , Especificidad por Sustrato
10.
J Biol Chem ; 274(38): 26907-11, 1999 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-10480900

RESUMEN

The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin. Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Escherichia coli , Retroalimentación , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Químicos , Modelos Moleculares , NADP/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Mutación Puntual , Relación Estructura-Actividad , Triptófano/metabolismo
11.
J Biol Chem ; 274(34): 24100-12, 1999 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-10446182

RESUMEN

Inducible nitric-oxide synthase (iNOS) is a hemeprotein that requires tetrahydrobiopterin (H4B) for activity. The influence of H4B on iNOS structure-function is complex, and its exact role in nitric oxide (NO) synthesis is unknown. Crystal structures of the mouse iNOS oxygenase domain (iNOSox) revealed a unique H4B-binding site with a high degree of aromatic character located in the dimer interface and near the heme. Four conserved residues (Arg-375, Trp-455, Trp-457, and Phe-470) engage in hydrogen bonding or aromatic stacking interactions with the H4B ring. We utilized point mutagenesis to investigate how each residue modulates H4B function. All mutants contained heme ligated to Cys-194 indicating no deleterious effect on general protein structure. Ala mutants were monomers except for W457A and did not form a homodimer with excess H4B and Arg. However, they did form heterodimers when paired with a full-length iNOS subunit, and these were either fully or partially active regarding NO synthesis, indicating that preserving residue identities or aromatic character is not essential for H4B binding or activity. Aromatic substitution at Trp-455 or Trp-457 generated monomers that could dimerize with H4B and Arg. These mutants bound Arg and H4B with near normal affinity, but Arg could not displace heme-bound imidazole, and they had NO synthesis activities lower than wild-type in both homodimeric and heterodimeric settings. Aromatic substitution at Phe-470 had no significant effects. Together, our work shows how hydrogen bonding and aromatic stacking interactions of Arg-375, Trp-457, Trp-455, and Phe-470 influence iNOSox dimeric structure, heme environment, and NO synthesis and thus help modulate the multiple effects of H4B.


Asunto(s)
Biopterinas/análogos & derivados , Óxido Nítrico Sintasa/química , Secuencia de Aminoácidos , Sitios de Unión , Biopterinas/metabolismo , Dimerización , Enlace de Hidrógeno , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Mutación Puntual , Relación Estructura-Actividad
12.
Acta Crystallogr D Biol Crystallogr ; 55(Pt 2): 379-85, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10089343

RESUMEN

The crystal structure of Ru(2, 2'-bipyridine)2(imidazole)(His83)azurin (RuAz) has been determined to 2.3 A -resolution by X-ray crystallography. The spectroscopic and thermodynamic properties of both the native protein and [Ru(2, 2'-bipyridine)2(imidazole)2]2+ are maintained in the modified protein. Dark-green RuAz crystals grown from PEG 4000, LiNO3, CuCl2 and Tris buffer are monoclinic, belong to the space group C2 and have cell parameters a = 100.6, b = 35.4, c = 74.7 A and beta = 106. 5 degrees. In addition, [Ru(2,2'-bipyridine)2(imidazole)2]SO4 x 10H2O was synthesized, crystallized and structurally characterized by X-ray crystallography. Red-brown crystals of this complex are monoclinic, space group P21/n, unit-cell parameters a = 13.230 (2), b = 18.197 (4), c = 16.126 (4) A, beta = 108.65 (2) degrees. Stereochemical parameters for the refinement of Ru(2, 2'-bipyridine)2(imidazole)(His83) were taken from the atomic coordinates of [Ru(2,2'-bipyridine)2(imidazole)2]2+. The structure of RuAz confirms that His83 is the only site of chemical modification and that the native azurin structure is not perturbed significantly by the ruthenium label.


Asunto(s)
Azurina/química , Compuestos Organometálicos/química , Pseudomonas aeruginosa/química , Rutenio/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxidación-Reducción , Conformación Proteica
13.
Cell ; 96(1): 131-41, 1999 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-9989504

RESUMEN

Histidine kinases allow bacteria, plants, and fungi to sense and respond to their environment. The 2.6 A resolution crystal structure of Thermotoga maritima CheA (290-671) histidine kinase reveals a dimer where the functions of dimerization, ATP binding, and regulation are segregated into domains. The kinase domain is unlike Ser/Thr/Tyr kinases but resembles two ATPases, Gyrase B and Hsp90. Structural analogies within this superfamily suggest that the P1 domain of CheA provides the nucleophilic histidine and activating glutamate for phosphotransfer. The regulatory domain, which binds the homologous receptor-coupling protein CheW, topologically resembles two SH3 domains and provides different protein recognition surfaces at each end. The dimerization domain forms a central four-helix bundle about which the kinase and regulatory domains pivot on conserved hinges to modulate transphosphorylation. Different subunit conformations suggest that relative domain motions link receptor response to kinase activity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Conformación Proteica , Proteínas Quinasas/química , Transducción de Señal , Thermotoga maritima/enzimología , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dimerización , Histidina Quinasa , Hidrólisis , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido
14.
Science ; 279(5359): 2121-6, 1998 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-9516116

RESUMEN

Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.


Asunto(s)
Arginina/metabolismo , Biopterinas/análogos & derivados , Óxido Nítrico Sintasa/química , Conformación Proteica , Animales , Arginina/química , Sitios de Unión , Biopterinas/química , Biopterinas/metabolismo , Citrulina/análogos & derivados , Citrulina/química , Citrulina/metabolismo , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Isoenzimas/química , Isoenzimas/metabolismo , Ligandos , Macrófagos/enzimología , Ratones , Modelos Moleculares , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Pliegue de Proteína , Estructura Secundaria de Proteína , Tiourea/análogos & derivados , Tiourea/química , Tiourea/metabolismo
15.
Biochemistry ; 36(40): 12101-19, 1997 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-9315848

RESUMEN

The active center of the Escherichia coli sulfite reductase hemoprotein (SiRHP) is exquisitely designed to catalyze the six-electron reductions of sulfite to sulfide and nitrite to ammonia. Refined high-resolution crystallographic structures of oxidized, two-electron reduced, and intermediately reduced states of SiRHP, monitored by single-crystal electron paramagnetic resonance (EPR) spectroscopy, reveal that a bridging cysteine thiolate supplied by the protein always covalently links the siroheme (iron isobacteriochlorin) to the Fe4S4 cluster, facilitating their ability to transfer electrons to substrate. The reduction potential and reactivity of the cluster are tuned by association with the siroheme, accessibility to solvent, and hydrogen bonds supplied by the protein loops containing the four cluster-ligating cysteines. The distorted conformation of the siroheme recognized by the protein potentially destabilizes the electronic conjugation of the isobacteriochlorin ring and produces axial configurations for some propionate side chains that promote interactions with exogenous ligands and active-site residues. An extensive hydrogen-bond network of positively charged side chains, ordered water molecules, and siroheme carboxylates coordinates, polarizes, and influences the protonation state of anionic ligands. In the oxidized (siroheme Fe3+, Fe4S42+) SiRHP crystal structure, the high density of positive charges in the binding pocket is stabilized by the siroheme's sixth axial ligand-an exogenous phosphate anion. Binding assays with H32PO42- demonstrate that oxidized SiRHP binds phosphate in solution with a dissociation constant of 14 microM at pH 7.7, suggesting that phosphate anions play an important role in stabilizing and sequestering the active-site of the oxidized enzyme in vivo. Reduction of the cofactors couples changes in siroheme iron coordination geometry to changes in active-site protein conformation, leading to phosphate release both in the crystal and in solution. An intermediately reduced enzyme, where the siroheme is mainly ferrous (+2) and the cluster cubane is mainly oxidized (+2), appears to have the lowest affinity for phosphate in the crystal. Reduction-gated release of phosphate from the substrate-binding site may explain the 10(5)-fold increase in rates of ligand association that accompany reduction of SiRHP.


Asunto(s)
Hemo/análogos & derivados , Proteínas Hierro-Azufre/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Análisis de Fourier , Hemo/química , Hemo/metabolismo , Proteínas Hierro-Azufre/metabolismo , Cinética , Ligandos , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Fosfatos/metabolismo , Unión Proteica , Sustancias Reductoras , Soluciones
16.
Biochemistry ; 36(40): 12120-37, 1997 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-9315849

RESUMEN

To further understand the six-electron reductions of sulfite and nitrite catalyzed by the Escherichia coli sulfite reductase hemoprotein (SiRHP), we have determined crystallographic structures of the enzyme in complex with the inhibitors phosphate, carbon monoxide, and cyanide, the substrates sulfite and nitrite, the intermediate nitric oxide, the product sulfide (or, most likely, an oxidized derivative thereof), and an oxidized nitrogen species (probably nitrate). A hydrogen-bonded cage of ligand-binding arginine and lysine side chains, ordered water molecules, and siroheme carboxylates provides preferred locations for recognizing the common functional groups of these ligands and accommodates their varied sizes, shapes, and charged without requiring substantial structural changes. The coordination geometries presented here suggest that the successively deoxygenated sulfur and nitrogen species produced during catalysis need not alter their orientation in the active site to adopt new stable coordination states. Strong pi-acid ligands decrease the bond length between the siroheme and the proximal cysteine thiolate shared with the iron-sulfur cluster, emphasizing the ability of the coupled cofactors to promote electron tranfer into substrate. On binding the siroheme, the substrate sulfite provides an oxygen atom in a unique location of the binding site compared to all other ligands studied, induces a spin transition in the siroheme iron, flips an active-site arginine, and orders surrounding active-center loops. The loop that coalesces over the active center shields the positively charged ligand-coordinating residues from solvent, enhancing their ability to polarize the substrate. Hydrogen bonds supplied by active-site arginine and lysine residues facilitate charge transfer into the substrate from the electron-rich cofactors, activate S-O bonds for reductive cleavage, and provide potential proton sources for the formation of favorable aquo leaving groups on the substrate. Strong interactions between sulfite and ordered water molecules also implicate solvent as a source of protons for generating product water. From the structures reported here, we propose a series of key structural states of ligated SiRHP in the catalytic reduction of sulfite to sulfide.


Asunto(s)
Escherichia coli/enzimología , Hemoproteínas/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Sitios de Unión , Monóxido de Carbono/química , Catálisis , Cristalografía por Rayos X , Cianuros/química , Hemo/análogos & derivados , Hemo/química , Ligandos , Nitratos/química , Nitritos/química , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Sulfitos/química
17.
Science ; 278(5337): 425-31, 1997 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-9334294

RESUMEN

The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Homeodominio/genética , Isoenzimas/química , Óxido Nítrico Sintasa/química , Conformación Proteica , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Sitios de Unión , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Catálisis , Cristalografía por Rayos X , Dimerización , Inducción Enzimática , Inhibidores Enzimáticos/metabolismo , Guanidinas/metabolismo , Hemo/química , Proteínas de Homeodominio/química , Proteínas de Homeodominio/fisiología , Enlace de Hidrógeno , Imidazoles/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína
18.
Biochemistry ; 36(17): 5097-103, 1997 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-9136868

RESUMEN

The oxygenase domain of the mouse cytokine-inducible nitric-oxide synthase (iNOSox, amino acids 1-498) binds heme, tetrahydrobiopterin, and the substrate Arg and is the domain responsible for catalyzing nitric oxide synthesis and maintaining the enzyme's active dimeric structure. To further understand iNOSox structure-function, we carried out alanine point mutagenesis on 15 conserved acidic residues located within a region of iNOSox (amino acids 352-473) that shares sequence homology with the pterin-binding module in dihydrofolate reductases and may be important for iNOSox subunit dimerization and/or Arg binding. Five point mutants were identical or nearly identical to wild-type, while 10 exhibited a range of defects that included low heme content (2), heme ligand instability (2), defective dimerization (2), and poor Arg and/or tetrahydrobiopterin binding (4). Mutations that caused defective tetrahydrobiopterin binding were also associated with other defects. In contrast, two mutants (E371A and D376A) exhibited an exclusive defect in Arg binding. These mutants were dimeric, indicating that dimerization of iNOSox in Escherichia coli does not require Arg. In one case (E371A), the defect in Arg binding was absolute, as assessed by spectral perturbation, radioligand binding, and catalytic studies. We conclude that mutagenesis of conserved acidic residues within this region of iNOSox can lead to exclusive defects in dimerization and in Arg binding. Modeling considerations predict that the E371 carboxylate may participate in Arg binding by interacting with its guanidine moiety.


Asunto(s)
Arginina/metabolismo , Ácido Glutámico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Alanina , Secuencia de Aminoácidos , Animales , Antioxidantes/metabolismo , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Bovinos , Cromatografía en Gel , Hemo/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Óxido Nítrico Sintasa/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Ratas , Relación Estructura-Actividad
19.
Acta Crystallogr D Biol Crystallogr ; 53(Pt 1): 8-22, 1997 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15299968

RESUMEN

The structure of the 60 kDa E. coli sulfite reductase hemoprotein (SiRHP) was determined by using multiwavelength anomalous diffraction (MAD) to exploit the relatively small anomalous signals produced near the Fe K absorption edge from the protein's native Fe(4)S(4) cluster and siroheme Fe atom. Because of systematic measurement error, generation of useful MAD data required rejection of outlying intensity observations that were only identified by careful manual scrutiny of the observed intensities and single parameter scaling among wedges of diffraction data. The key steps for obtaining effective phases were local anisotropic scaling between Bijvoet pairs and among wavelengths, extraction of phase information from unmerged observations, and refinement of the anomalous scattering model. Important factors for positioning the anomalous scattering model included removal of aberrant coefficients from Patterson syntheses, positional refinement of the Fe positions against MAD-derived normal-scattering amplitudes, and systematic searches of cluster orientation that attempted to optimize agreement between observed and calculated MAD intensities. To obtain MAD phases for reflections that were underdetermined for least-squares methods, parameters necessary for defining phase-probability distributions had to be estimated from the anomalous scattering model. The MAD phase distributions, when combined probabilistically with otherwise insufficient MIR phase information, led to the determination of the SiRHP structure. The techniques developed and lessons learned from the SiRHP MAD experiment should be applicable to the design of MAD experiments on other macromolecules.

20.
Acta Crystallogr D Biol Crystallogr ; 53(Pt 1): 23-40, 1997 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15299969

RESUMEN

A strategy is presented for refining anomalous scattering models and calculating protein phases directly from the Bijvoet and dispersive differences of a macromolecular multiwavelength anomalous diffraction (MAD) experiment. This procedure, incorporated in the program MADPHSREF, is especially amenable for exploiting the weak perturbations to normal scattering produced by inner-shell electronic transitions of asymmetric metal and protein ligand assemblies. The protocol accounts for more than one type of anomalous scatterer, incorporates stereochemical restraints, treats the data in local scaling groups, and partly compensates for correlated errors. Approximating maximum likelihood by averaging observation variances and covariances over all values of phase considerably improved error estimation. Probabilistic rejection of aberrant observations, re-evaluated before each refinement cycle, improved refinement convergence and accuracy compared with other less flexible rejection criteria. MADPHSREF allows the facile combination of MAD phase information with phase information from other sources. For the suifite reductase hemoprotein (SiRHP), relative weights for MAD and multiple isomorphous replacement (MIR) phases were determined by matching histograms of electron density. Accurate metal-cluster geometries and the associated errors in atomic positions can be determined from refinement against anomalous differences using normal scattering phases from a refined structure. When applied to MAD data collected on SiRHP, these methods confirmed the Fe(4)S(4) cluster asymmetry initially observed in the refined 1.6 A resolution structure and resulted in a MAD-phased, experimental, electron-density map that is of better quality than the combined MAD/MIR map originally used to determine the structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...