Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Dairy Sci ; 103(4): 3431-3446, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32008788

RESUMEN

Staphylococcus aureus is recognized worldwide as one of the main contagious mastitis agents in cattle and can express a set of antimicrobial resistance genes and virulence-associated genes that explain the wide range of outcomes of intramammary infections. Staphylococcus aureus strains are heterogeneous: their different resistance and virulence patterns, associated with host-level factors and treatment factors, are related to the severity of infection. The aim of this study was to determine phenotypic antibiotic susceptibility, occurrence of selected antimicrobial resistance genes and other virulence genes in 93 S. aureus strains isolated from clinical mastitis in 6 countries: Argentina, Brazil, Germany, Italy, the United States (New York State), and South Africa. These isolates were tested against a total of 16 drugs (amoxicillin-clavulanate, ampicillin, cefazolin, cefoperazone, cefquinome, enrofloxacin, erythromycin, gentamicin, kanamycin, lincomycin, oxacillin, penicillin, rifampin, spiramycin, sulfamethoxazole/trimethoprim, tylosin) by minimum inhibitory concentration (MIC) assay, and examined for the presence of 6 antibiotic-resistance genes (blaZ, mecA, mecC, ermA, ermB, ermC) and 6 virulence-associated genes (scn, chp, sak, hla, hlb, sea) via PCR analysis. The phenotypic results of this study revealed the presence of 19.4% penicillin-resistant strains, whereas 22.6% of the strains were classified as having resistance (5.4%) or intermediate resistance (17.2%) to erythromycin. Most (96.8%) of the isolates were inhibited by cephalosporins, and all were susceptible to amoxicillin-clavulanate. Two strains (1 from Germany, 1 from Italy) were resistant to oxacillin and were positive for mecA. Among the other antimicrobial resistance genes, the most frequently detected was blaZ (46.2%), and 32.3% of the isolates were positive for erm genes: ermC (21.5%) and ermB (10.8%). The most prevalent virulence gene was hla (100%), followed by hlb (84.9%) and sea (65.6%). These results show a low prevalence of antibiotic multidrug resistance in S. aureus isolates, even if the detection of selected antimicrobial resistance genes did not always correspond with the occurrence of phenotypic antibiotic resistance; the immune evasion cluster gene prevalence was quite low in the samples analyzed.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/efectos de los fármacos , Animales , Argentina , Brasil , Bovinos , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Femenino , Alemania , Italia , Pruebas de Sensibilidad Microbiana , New York , Oxacilina/farmacología , Sudáfrica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/patogenicidad , Virulencia
2.
Lett Appl Microbiol ; 64(6): 419-423, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28349671

RESUMEN

Prototheca species have increasingly been reported to be opportunistic pathogens that cause mastitis in dairy herds, and it poses an emergent problem because at present, there are no effective therapies for the treatment of protothecal mastitis. This study investigated the in vitro algicidal effect of guanidine on 75 Prototheca zopfii genotype 2 strains isolated from 75 cases of clinical and subclinical bovine mastitis. All strains were susceptible to guanidine in vitro with minimal algaecide concentrations ranging from 0·001 to 0·035%. Guanidine is known to have a high microbicidal effect and is considered to be a new generation microbicidal compound. It is not toxic to human mucous membranes and conjunctivas at low concentrations and has been used as a disinfectant in swimming pools and as an antiseptic for human wounds. The algicidal action of guanidine at low concentrations indicates that it could be an alternative disinfectant or antiseptic for cleaning of the dairy environment and milking equipment, in pre- and postdipping solutions, in the chemical dry therapy of bovine teats and even in the intramammary therapy of P. zopfii infections. This is the first report of the in vitro algicidal effect of guanidine on P. zopfii strains of animal origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Prototheca zopfii genotype 2 is an opportunistic pathogen of bovine mastitis. To date, no effective therapies against protothecal mastitis have been developed. The in vitro algicidal effect of guanidine on 75 P. zopfii genotype 2 strains isolated from cows revealed that all of the isolates were susceptible to the compound at low concentrations, which indicates that guanidine may be used as an antiseptic/disinfectant for dairy milking equipment, in pre- and postdipping solutions, and as a chemical dry therapy or an intramammary therapy. This study describes the in vitro algicidal effect of guanidine on P. zopfii for the first time.


Asunto(s)
Guanidina/farmacología , Mastitis Bovina/epidemiología , Prototheca/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Antiinfecciosos Locales/farmacología , Bovinos , Industria Lechera , Desinfectantes/farmacología , Femenino , Genotipo , Humanos , Mastitis Bovina/tratamiento farmacológico , Epidemiología Molecular , Prototheca/genética , Prototheca/aislamiento & purificación
3.
J Dairy Sci ; 99(8): 6436-6445, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27236754

RESUMEN

Bovine mastitis caused by Prototheca is a serious and complex problem that accounts for high economic losses in the dairy industry. The main objective of this study was to identify and characterize at genetic level different Prototheca strains and provide the most complete data about protothecal antibiotic resistance. The study involves 46 isolates from Italian (13 strains) and Brazilian (33 strains) mastitic milk. These strains were identified by multiplex PCR and single strand conformation polymorphism analysis and characterized by randomly amplified polymorphic DNA (RAPD)-PCR. Moreover, biofilm production and antibiotic susceptibility were evaluated. Forty-two strains resulted as Prototheca zopfii genotype 2, whereas 4 isolates could belong to a potential new Prototheca species. The RAPD-PCR, performed with 3 primers (M13, OPA-4, and OPA-18), showed a notable heterogeneity among isolates and grouped the strains according to the species and geographical origin. Biofilm production was species-dependent and P. zopfii genotype 2 strains were classified as strong biofilm producers. In vitro antibiotic susceptibility tests indicated that Prototheca strains were susceptible to antibacterial drugs belonging to aminoglycosides group; the highest activity against Prototheca strains was observed in the case of colistin sulfate, gentamicin, and netilmicin (100% of susceptible strains). It is interesting to note that all the Italian P. zopfii genotype 2 strains showed lower minimum inhibitory concentration values than the Brazilian ones. Nisin showed more efficacy than lysozyme and potassium sorbate, inhibiting 31% of the strains. Results obtained in this study confirmed that RAPD-PCR is a rapid, inexpensive, and highly discriminating tool for Prototheca strains characterization and could give a good scientific contribution for better understanding the protothecal mastitis in dairy herd.


Asunto(s)
Biopelículas , Prototheca/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Animales , Antibacterianos , Brasil , Bovinos , Italia , Mastitis Bovina/microbiología , Tipificación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA