Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement (Amst) ; 16(3): e12623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130802

RESUMEN

INTRODUCTION: Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain. METHODS: We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (APOE) ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia. RESULTS: Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia. DISCUSSION: Several sphingolipid species appear to be involved in cognitive decline and dementia risk. Highlights: Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.

3.
Am J Epidemiol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38904434

RESUMEN

Mendelian randomization is an epidemiological technique that can explore the potential effect of perturbing a pharmacological target. Plasma caffeine levels can be used as a biomarker to measure the pharmacological effects of caffeine. Alternatively, this can be assessed using a behavioral proxy, such as average number of caffeinated drinks consumed per day. Either variable can be used as the exposure in a Mendelian randomization investigation, and to select which genetic variants to use as instrumental variables. Another possibility is to choose variants in gene regions with known biological relevance to caffeine level regulation. These choices affect the causal question that is being addressed by the analysis, and the validity of the analysis assumptions. Further, even when using the same genetic variants, the sign of Mendelian randomization estimates (positive or negative) can change depending on the choice of exposure. Some genetic variants that decrease caffeine metabolism associate with higher levels of plasma caffeine, but lower levels of caffeine consumption, as individuals with these variants require less caffeine consumption for the same physiological effect. We explore Mendelian randomization estimates for the effect of caffeine on body mass index, and discuss implications for variant and exposure choice in drug target Mendelian randomization investigations.

4.
Biomedicines ; 12(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38397929

RESUMEN

Neuropsychiatric disorders present a global health challenge, necessitating an understanding of their molecular mechanisms for therapeutic development. Using Mendelian randomization (MR) analysis, this study explored associations between genetically predicted levels of 173 proteins in cerebrospinal fluid (CSF) and 25 in the brain with 14 neuropsychiatric disorders and risk factors. Follow-up analyses assessed consistency across plasma protein levels and gene expression in various brain regions. Proteins were instrumented using tissue-specific genetic variants, and colocalization analysis confirmed unbiased gene variants. Consistent MR and colocalization evidence revealed that lower cortical expression of low-density lipoprotein receptor-related protein 8, coupled higher abundance in the CSF and plasma, associated with lower fluid intelligence scores and decreased bipolar disorder risk. Additionally, elevated apolipoprotein-E2 and hepatocyte growth factor-like protein in the CSF and brain were related to reduced leisure screen time and lower odds of physical activity, respectively. Furthermore, elevated CSF soluble tyrosine-protein kinase receptor 1 level increased liability to attention deficit hyperactivity disorder and schizophrenia alongside lower fluid intelligence scores. This research provides genetic evidence supporting novel tissue-specific proteomic targets for neuropsychiatric disorders and their risk factors. Further exploration is necessary to understand the underlying biological mechanisms and assess their potential for therapeutic intervention.

5.
BMC Med ; 22(1): 81, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378567

RESUMEN

BACKGROUND: Caffeine is one of the most utilized drugs in the world, yet its clinical effects are not fully understood. Circulating caffeine levels are influenced by the interplay between consumption behaviour and metabolism. This study aimed to investigate the effects of circulating caffeine levels by considering genetically predicted variation in caffeine metabolism. METHODS: Leveraging genetic variants related to caffeine metabolism that affect its circulating levels, we investigated the clinical effects of plasma caffeine in a phenome-wide association study (PheWAS). We validated novel findings using a two-sample Mendelian randomization framework and explored the potential mechanisms underlying these effects in proteome-wide and metabolome-wide Mendelian randomization. RESULTS: Higher levels of genetically predicted circulating caffeine among caffeine consumers were associated with a lower risk of obesity (odds ratio (OR) per standard deviation increase in caffeine = 0.97, 95% confidence interval (CI) CI: 0.95-0.98, p = 2.47 × 10-4), osteoarthrosis (OR = 0.97, 95% CI: 0.96-0.98, P=1.10 × 10-8) and osteoarthritis (OR: 0.97, 95% CI: 0.96 to 0.98, P = 1.09 × 10-6). Approximately one third of the protective effect of plasma caffeine on osteoarthritis risk was estimated to be mediated through lower bodyweight. Proteomic and metabolomic perturbations indicated lower chronic inflammation, improved lipid profiles, and altered protein and glycogen metabolism as potential biological mechanisms underlying these effects. CONCLUSIONS: We report novel evidence suggesting that long-term increases in circulating caffeine may reduce bodyweight and the risk of osteoarthrosis and osteoarthritis. We confirm prior genetic evidence of a protective effect of plasma caffeine on risk of overweight and obesity. Further clinical study is warranted to understand the translational relevance of these findings before clinical practice or lifestyle interventions related to caffeine consumption are introduced.


Asunto(s)
Cafeína , Osteoartritis , Humanos , Proteoma/genética , Análisis de la Aleatorización Mendeliana , Proteómica , Obesidad/epidemiología , Obesidad/genética , Metaboloma/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
6.
Genes (Basel) ; 15(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38254961

RESUMEN

OBJECTIVE: The association of cerebrospinal fluid (CSF) protein levels with cognitive function in the general population remains largely unexplored. We performed Mendelian randomization (MR) analyses to query which CSF proteins may have potential causal effects on cognitive performance. METHODS AND ANALYSIS: Genetic associations with CSF proteins were obtained from a genome-wide association study conducted in up to 835 European-ancestry individuals and for cognitive performance from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genetically predicted CSF protein levels on cognitive performance. Findings were validated by performing colocalization analyses and considering cognition-related phenotypes. RESULTS: Genetically predicted C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12 to 0.35, p = 7.91 × 10-5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated with a worse cognitive performance (-0.43, -0.62 to -0.23, p = 2.08 × 10-5). These findings were supported by colocalization analyses and by concordant effects on distinct cognition-related and brain-volume measures. CONCLUSIONS: Human genetics supports a role for the C1-esterase inhibitor and sTie-1 in cognitive performance.


Asunto(s)
Proteína Inhibidora del Complemento C1 , Proteoma , Humanos , Cognición , Esterasas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Metaanálisis como Asunto , Proteoma/genética
7.
Neurology ; 102(4): e209128, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38261980

RESUMEN

The Mendelian randomization (MR) paradigm allows for causal inferences to be drawn using genetic data. In recent years, the expansion of well-powered publicly available genetic association data related to phenotypes such as brain tissue gene expression, brain imaging, and neurologic diseases offers exciting opportunities for the application of MR in the field of neurology. In this review, we discuss the basic principles of MR, its myriad applications to research in neurology, and potential pitfalls of injudicious applications. Throughout, we provide examples where MR-informed findings have shed light on long-standing epidemiologic controversies, provided insights into the pathophysiology of neurologic conditions, prioritized drug targets, and informed drug repurposing opportunities. With the ever-expanding availability of genome-wide association data, we project MR to become a key driver of progress in the field of neurology. It is therefore paramount that academics and clinicians within the field are familiar with the approach.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neurología , Humanos , Análisis de la Aleatorización Mendeliana , Encéfalo , Reposicionamiento de Medicamentos
8.
BMJ ; 383: e076197, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086555

RESUMEN

OBJECTIVE: To investigate the association of genetically proxied (using a surrogate biomarker) inhibition of phosphodiesterase 5 (PDE5), an established drug target for erectile dysfunction, with fertility, sexual behaviour, and subjective wellbeing. DESIGN: Two sample cis-mendelian randomisation study. SETTING: Summary data on genetic associations obtained from the International Consortium for Blood Pressure and UK Biobank. PARTICIPANTS: Individuals of European ancestry from the International Consortium for Blood Pressure (n=757 601) for estimating PDE5 inhibition (using the surrogate biomarker of diastolic blood pressure reduction), and UK Biobank (n=211 840) for estimating the fertility, sexual behaviour, and subjective wellbeing outcomes in male participants. INTERVENTION: Genetically proxied PDE5 inhibition. MAIN OUTCOME MEASURES: Number of children fathered, number of sexual partners, probability of never having had sexual intercourse, and subjective wellbeing. RESULTS: Genetically proxied PDE5 inhibition was associated with male participants having 0.28 (95% confidence interval 0.16 to 0.39) more children (false discovery rate corrected P<0.001). This association was not identified in female participants. No evidence was found of an association between genetically proxied PDE5 inhibition and number of sexual partners, probability of never having had sexual intercourse, or self-reported wellbeing in male participants. CONCLUSIONS: The findings of this study provide genetic support for PDE5 inhibition potentially increasing the number of children fathered by male individuals. Absence of this association in female participants supports increased propensity for sustained and robust penile erections as a potential underlying mechanism. Further studies are required to confirm this, however, and these findings should not promote indiscriminate use of PDE5 inhibitors, which can also have harmful adverse effects.


Asunto(s)
Disfunción Eréctil , Niño , Masculino , Humanos , Femenino , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/genética , Conducta Sexual , Erección Peniana , Fertilidad/genética , Biomarcadores
9.
Nutrients ; 15(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37892497

RESUMEN

Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization (MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of >47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same pharmacological effect. Further research is needed to distinguish whether the observed effects on kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective effects of greater intake of caffeine-containing beverages, particularly given the widespread use of drinks containing caffeine and the increasing burden of kidney disease.


Asunto(s)
Cafeína , Insuficiencia Renal Crónica , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Riñón , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA