Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38676159

RESUMEN

The presence of green areas in urbanized cities is crucial to reduce the negative impacts of urbanization. However, these areas can influence the signal quality of IoT devices that use wireless communication, such as LoRa technology. Vegetation attenuates electromagnetic waves, interfering with the data transmission between IoT devices, resulting in the need for signal propagation modeling, which considers the effect of vegetation on its propagation. In this context, this research was conducted at the Federal University of Pará, using measurements in a wooded environment composed of the Pau-Mulato species, typical of the Amazon. Two machine learning-based propagation models, GRNN and MLPNN, were developed to consider the effect of Amazonian trees on propagation, analyzing different factors, such as the transmitter's height relative to the trunk, the beginning of foliage, and the middle of the tree canopy, as well as the LoRa spreading factor (SF) 12, and the co-polarization of the transmitter and receiver antennas. The proposed models demonstrated higher accuracy, achieving values of root mean square error (RMSE) of 3.86 dB and standard deviation (SD) of 3.8614 dB, respectively, compared to existing empirical models like CI, FI, Early ITU-R, COST235, Weissberger, and FITU-R. The significance of this study lies in its potential to boost wireless communications in wooded environments. Furthermore, this research contributes to enhancing more efficient and robust LoRa networks for applications in agriculture, environmental monitoring, and smart urban infrastructure.

2.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080959

RESUMEN

The Internet of Things (IoT) device scenario has several emerging technologies. Among them, Low-Power Wide-Area Networks (LPWANs) have proven to be efficient connections for smart devices. These devices communicate through gateways that exchange points with the central server. This study proposes an empirical and statistical methodology based on measurements carried out in a typical scenario of Amazonian cities composed of forests and buildings on the Campus of the Federal University of Pará (UFPA) to apply an adjustment to the coefficients in the UFPA propagation model. Furthermore, an Evolutionary Particle Swarm Optimization (EPSO) metaheuristic with multi-objective optimization was applied to maximize the coverage area and minimize the number of gateways to assist in the planning of a LoRa network. The results of simulations using the Monte Carlo method show that the EPSO-based gateway placement optimization methodology can be used to plan future LPWAN networks. As reception sensitivity is a decisive factor in the coverage area, with -108 dBm, the optimal solution determined the use of three gateways to cover the smart campus area.

3.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35890914

RESUMEN

The 5G deployment brings forth the usage of Unmanned Aerial Vehicles (UAV) to assist wireless networks by providing improved signal coverage, acting as relays or base-stations. Another technology that could help achieve 5G massive machine-type communications (mMtc) goals is the Long Range Wide-Area Network (LoRaWAN) communication protocol. This paper studied these complementary technologies, LoRa and UAV, through measurement campaigns in suburban, densely forested environments. Downlink and uplink communication at different heights and spreading factors (SF) demonstrate distinct behavior through our analysis. Moreover, a neural network was trained to predict the measured signal-to-noise ratio (SNR) behavior and results compared with SNR regression models. For the downlink scenario, the neural network results show a root mean square error (RMSE) variation between 1.2322-1.6623 dB, with an error standard deviation (SD) less than 1.6730 dB. For the uplink, the RMSE variation was between 0.8714-1.3891 dB, with an error SD less than 1.1706 dB.


Asunto(s)
Redes de Comunicación de Computadores , Redes Neurales de la Computación , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA