Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 15(16): 1457-72, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11507760

RESUMEN

Theoretical model calculations were performed to validate the 'mobile proton' model for protonated lysylglycine (KG). Detailed scans carried out at various quantum chemical levels of the potential energy surface (PES) of protonated KG resulted in a large number of minima belonging to various protonation sites and conformers. Transition structures corresponding to proton transfer reactions between different protonation sites were determined, to obtain some energetic and structural insight into the atomic details of these processes. The rate coefficients of the proton transfer reactions between the isomers were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) method in order to obtain a quantitative measure of the time-scale of these processes. Our results clearly indicate that the added proton is less mobile for protonated KG than for peptides lacking a basic amino acid residue. However, the energy needed to reach the energetically less favorable but-from the point of view of backbone fragmentation-critical amide nitrogen protonation sites is available in tandem mass spectrometers operated under low-energy collision conditions. Using the results of our scan of the PES of protonated KG, the dissociation pathways corresponding to the main fragmentation channels for protonated KG were also determined. Such pathways include loss of ammonia and formation of a protonated alpha-amino-epsilon-caprolactam. The results of our theoretical modeling, which revealed all the atomic details of these processes, are in agreement with the available experimental results.


Asunto(s)
Dipéptidos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Cinética , Modelos Moleculares , Conformación Molecular , Protones , Teoría Cuántica , Reproducibilidad de los Resultados
2.
Rapid Commun Mass Spectrom ; 15(8): 637-50, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11312515

RESUMEN

Theoretical model calculations were performed to investigate the degree of validity of the mobile proton model of protonated peptides. The structures and energies of the most important minima corresponding to different structural isomers of protonated diglycine and their conformers, as well as the barriers separating them, were determined by DFT calculations. The rate coefficients of the proton transfer reactions between the isomers were calculated using the RRKM method in order to obtain a quantitative measure of the time scale of these processes. The proton transfer reactions were found to be very fast already at and above the threshold to the lowest energy decomposition pathway. Two possible mechanisms of b2+-ion formation via water loss from the dipeptide are also discussed. The rate-determining step of the proton migration along a peptide chain is also investigated using the model compound N-formylglycylglycinamide. The investigations revealed that this process very possibly occurs via the protonation of the carbonyl oxygens of the amide bonds, and its rate-determining step is an internal rotation-type transition of the protonated C=O-H group between two adjacent C=O-HellipsisO=C bridges.


Asunto(s)
Glicina/análogos & derivados , Glicina/química , Glicilglicina/química , Fenómenos Químicos , Química Física , Modelos Moleculares , Conformación Molecular , Protones , Teoría Cuántica
3.
Rapid Commun Mass Spectrom ; 14(6): 417-31, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10717650

RESUMEN

The mobile proton model was critically evaluated by using purely theoretical models which include quantum mechanical calculations to determine stationary points on the potential energy surface (PES) of a model compound, and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations to determine the rate constants of various processes (conformational changes, proton transfer reactions) which occur during mass analysis of protonated peptides. Extensive mapping of the PES of protonated N-formylglycinamide resulted in various minima which were stabilized by one or more of the following types of interaction: internal hydrogen bond, charge transfer interaction, charge delocalization, and ring formation. The relative energies of most of the investigated minima are less then 20 kcal mol(-1) compared with the most stable species. More importantly, the relative energies of the transition structures connecting these minima are fairly low, allowing facile transitions among the energetically low-lying species. It is demonstrated that a path can be found leading from the energetically most stable species, protonated on an amide oxygen, to the structure from which the energetically most favorable fragmentation occurs. It is also shown that the added proton can sample all protonation sites prior to fragmentation. The RRKM calculations applied the results of ab initio computations (structures, energetics, vibrational frequencies) to the reactions (internal rotations, proton transfers) occurring in protonated N-formylglycinamide, and clearly lend additional evidence to the mobile proton model. Based on the results of the PES search on protonated N-formylglycinamide, we also comment on the mechanism proposed by Arnot et al. (Arnot D, Kottmeier D, Yates N, Shabanowitz J, Hunt D F. 42(nd) ASMS Conference on Mass Spectrometry, 1994; 470) and Reid et al. (Reid G E, Simpson R J, O'Hair R A J. J. Am. Soc. Mass Spectrom. 1998; 9:945) for the formation of b(2)(+) ions. According to the high level ab initio results, the mechanism relying on amide oxygen protonated species seems to be less feasible than the one which involves N-protonated species.


Asunto(s)
Péptidos/química , Fenómenos Químicos , Química Física , Glicina/análogos & derivados , Glicina/química , Indicadores y Reactivos , Mapeo Peptídico , Conformación Proteica , Protones , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...