Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1249555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929175

RESUMEN

Sweet sorghum is an attractive feedstock for the production of renewable chemicals and fuels due to the readily available fermentable sugars that can be extracted from the juice, and the additional stream of fermentable sugars that can be obtained from the cell wall polysaccharides in the bagasse. An important selection criterion for new sweet sorghum germplasm is resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum sublineolum. The identification of novel anthracnose-resistance sources present in sweet sorghum germplasm offers a fast track towards the development of new resistant sweet sorghum germplasm. We established a sweet sorghum diversity panel (SWDP) of 272 accessions from the USDA-ARS National Plant Germplasm (NPGS) collection that includes landraces from 22 countries and advanced breeding material, and that represents ~15% of the NPGS sweet sorghum collection. Genomic characterization of the SWDP identified 171,954 single nucleotide polymorphisms (SNPs) with an average of one SNP per 4,071 kb. Population structure analysis revealed that the SWDP could be stratified into four populations and one admixed group, and that this population structure could be aligned to sorghum's racial classification. Results from a two-year replicated trial of the SWDP for anthracnose resistance response in Texas, Georgia, Florida, and Puerto Rico showed 27 accessions to be resistant across locations, while 145 accessions showed variable resistance response against local pathotypes. A genome-wide association study identified 16 novel genomic regions associated with anthracnose resistance. Four resistance loci on chromosomes 3, 6, 8 and 9 were identified against pathotypes from Puerto Rico, and two resistance loci on chromosomes 3 and 8 against pathotypes from Texas. In Georgia and Florida, three resistance loci were detected on chromosomes 4, 5, 6 and four on chromosomes 4, 5 (two loci) and 7, respectively. One resistance locus on chromosome 2 was effective against pathotypes from Texas and Puerto Rico and a genomic region of 41.6 kb at the tip of chromosome 8 was associated with resistance response observed in Georgia, Texas, and Puerto Rico. This publicly available SWDP and the extensive evaluation of anthracnose resistance represent a valuable genomic resource for the improvement of sorghum.

2.
Plant Dis ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966473

RESUMEN

Bananas (Musa spp.) are among the world's most economically important staple food crops. The most important fungal leaf diseases of Musa spp. worldwide are caused by the Sigatoka disease complex, which comprise black Sigatoka (Pseudocercospora fijiensis), yellow Sigatoka (P. musae), and Eumusae leaf spot (P. eumusae). Considering the rapid spreading rate of black Sigatoka in Puerto Rico after its first observation in 2004, a disease survey was conducted from 2018 to 2020 to evaluate the Sigatoka disease complex on the island. Sixty-one leaf samples showing Sigatoka-like symptoms were collected throughout the island for diagnosis by molecular approaches and fungal isolation. Molecular analysis using species-specific primers for P. fijiensis, P. musae and P. eumusae detected the presence of P. fijiensis in fifty leaf samples. Thirty-eight fungal isolates were collected and identified by morphology and genomic sequencing from various nuclear genes. The analysis identified 24 isolates as P. fijiensis, while the rest of the isolates belonged to the genus Cladosporium spp. and Cladosporium-like spp. (n=5), Neocordana musae (n=2), Zasmidium spp. (n=6), and Z. musigenum (n=1). The high frequency of P. fijiensis found in leaf samples and collected isolates suggest that black Sigatoka has displaced the yellow Sigatoka (P. musae) in Puerto Rico. Accurate identification of fungal species causing foliar diseases in Musa spp. will allow the establishment of quarantine regulations and specific management approaches in Puerto Rico.

3.
Sci Rep ; 11(1): 20525, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654899

RESUMEN

Anthracnose caused by the fungal pathogen C. sublineola is an economically important constraint on worldwide sorghum production. The most effective strategy to safeguard yield is through the introgression of resistance alleles. This requires elucidation of the genetic basis of the different resistance sources that have been identified. In this study, 223 recombinant inbred lines (RILs) derived from crossing anthracnose-differentials QL3 (96 RILs) and IS18760 (127 RILs) with the common susceptible parent PI609251 were evaluated at four field locations in the United States (Florida, Georgia, Texas, and Puerto Rico) for their anthracnose resistance response. Both RIL populations were highly susceptible to anthracnose in Florida and Georgia, while in Puerto Rico and Texas they were segregating for anthracnose resistance response. A genome scan using a composite linkage map of 982 single nucleotide polymorphisms (SNPs) detected two genomic regions of 4.31 and 0.85 Mb on chromosomes 4 and 8, respectively, that explained 10-27% of the phenotypic variation in Texas and Puerto Rico. In parallel, a subset of 43 RILs that contained 67% of the recombination events were evaluated against anthracnose pathotypes from Arkansas (2), Puerto Rico (2) and Texas (4) in the greenhouse. A genome scan showed that the 7.57 Mb region at the distal end of the short arm of chromosome 5 is associated with the resistance response against the pathotype AMP-048 from Arkansas. Comparative analysis identified the genomic region on chromosome 4 overlaps with an anthracnose resistance locus identified in another anthracnose-differential line, SC414-12E, indicating this genomic region is of interest for introgression in susceptible sorghum germplasm. Candidate gene analysis for the resistance locus on chromosome 5 identified an R-gene cluster that has high similarity to another R-gene cluster associated with anthracnose resistance on chromosome 9.


Asunto(s)
Colletotrichum/fisiología , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Sitios de Carácter Cuantitativo , Sorghum/genética , Enfermedades de las Plantas , Sorghum/inmunología , Sorghum/microbiología , Especificidad de la Especie
4.
BMC Genomics ; 21(1): 88, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992189

RESUMEN

BACKGROUND: The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) sorghum core collection contains 3011 accessions randomly selected from 77 countries. Genomic and phenotypic characterization of this core collection is necessary to encourage and facilitate its utilization in breeding programs and to improve conservation efforts. In this study, we examined the genome sequences of 318 accessions belonging to the NPGS Sudan sorghum core set, and characterized their agronomic traits and anthracnose resistance response. RESULTS: We identified 183,144 single nucleotide polymorphisms (SNPs) located within or in proximity of 25,124 annotated genes using the genotyping-by-sequencing (GBS) approach. The core collection was genetically highly diverse, with an average pairwise genetic distance of 0.76 among accessions. Population structure and cluster analysis revealed five ancestral populations within the Sudan core set, with moderate to high level of genetic differentiation. In total, 171 accessions (54%) were assigned to one of these populations, which covered 96% of the total genomic variation. Genome scan based on Tajima's D values revealed two populations under balancing selection. Phenotypic analysis showed differences in agronomic traits among the populations, suggesting that these populations belong to different ecogeographical regions. A total of 55 accessions were resistant to anthracnose; these accessions could represent multiple resistance sources. Genome-wide association study based on fixed and random model Circulating Probability (farmCPU) identified genomic regions associated with plant height, flowering time, panicle length and diameter, and anthracnose resistance response. Integrated analysis of the Sudan core set and sorghum association panel indicated that a large portion of the genetic variation in the Sudan core set might be present in breeding programs but remains unexploited within some clusters of accessions. CONCLUSIONS: The NPGS Sudan core collection comprises genetically and phenotypically diverse germplasm with multiple anthracnose resistance sources. Population genomic analysis could be used to improve screening efforts and identify the most valuable germplasm for breeding programs. The new GBS data set generated in this study represents a novel genomic resource for plant breeders interested in mining the genetic diversity of the NPGS sorghum collection.


Asunto(s)
Ascomicetos , Evolución Biológica , Resistencia a la Enfermedad/genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Carácter Cuantitativo Heredable , Sorghum/genética , Sorghum/microbiología , Alelos , Genética de Población , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Sudán
5.
PLoS One ; 13(2): e0191877, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29444109

RESUMEN

Sorghum germplasm from West and Central Africa is cultivated in rainy and high humidity regions and is an important source of resistance genes to fungal diseases. Mold and anthracnose are two important biotic constraints to sorghum production in wet areas worldwide. Here, 158 National Plant Germplasm System (NPGS) accessions from Senegal were evaluated for agronomic traits, anthracnose, and grain mold resistance at two locations, and genetically characterized according to 20 simple sequence repeat markers. A total of 221 alleles were amplified with an average of 11 alleles per locus. Each accession had a unique genetic profile (i.e., no duplicates), and the average genetic distance between accessions was 0.42. Population structure and cluster analysis separated the collection into four populations with pairwise FST values >0.15. Three of the populations were composed of Guinea-race sorghum germplasm, and one included multiple races. Anthracnose resistant accessions were present at high frequency and evenly distributed among the three Guinea-race populations. Fourteen accessions showed resistance to grain mold, and eight were resistant to both diseases. These results indicated that the NPGS of Senegal is a genetically diverse collection with a high frequency of disease resistant accessions. Nevertheless, its population structure suggests the presence of few sources of resistance to both grain mold and anthracnose, which are fixed in the germplasm. The phenotypic and genotypic information for these accessions provides a valuable resource for its correct use to broaden the genetic base of breeding programs.


Asunto(s)
Genes de Plantas , Sorghum/genética , África Central , África Occidental , Alelos , Senegal , Sorghum/inmunología
6.
BMC Genomics ; 18(1): 108, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125967

RESUMEN

BACKGROUND: The USDA Agriculture Research Service National Plant Germplasm System (NPGS) preserves the largest sorghum germplasm collection in the world, which includes 7,217 accessions from the center of diversity in Ethiopia. The characterization of this exotic germplasm at a genome-wide scale will improve conservation efforts and its utilization in research and breeding programs. Therefore, we phenotyped a representative core set of 374 Ethiopian accessions at two locations for agronomic traits and characterized the genomes. RESULTS: Using genotyping-by-sequencing, we identified 148,476 single-nucleotide polymorphism (SNP) markers distributed across the entire genome. Over half of the alleles were rare (frequency < 0.05). The genetic profile of each accession was unique (i.e., no duplicates), and the average genetic distance among accessions was 0.70. Based on population structure and cluster analyses, we separated the collection into 11 populations with pairwise F ST values ranging from 0.11 to 0.47. In total, 198 accessions (53%) were assigned to one of these populations with an ancestry membership coefficient of larger than 0.60; these covered 90% of the total genomic variation. We characterized these populations based on agronomic and seed compositional traits. We performed a cluster analysis with the sorghum association panel based on 26,026 SNPs and determined that nine of the Ethiopian populations expanded the genetic diversity in the panel. Genome-wide association analysis demonstrated that these low-coverage data and the observed population structure could be employed for the genomic dissection of important phenotypes in this core set of Ethiopian sorghum germplasm. CONCLUSIONS: The NPGS Ethiopian sorghum germplasm is a genetically and phenotypically diverse collection comprising 11 populations with high levels of admixture. Genetic associations with agronomic traits can be used to improve the screening of exotic germplasm for selection of specific populations. We detected many rare alleles, suggesting that this germplasm contains potentially useful undiscovered alleles, but their discovery and characterization will require extensive effort. The genotypic data available for these accessions provide a valuable resource for sorghum breeders and geneticists to effectively improve crops.


Asunto(s)
Genoma de Planta , Genómica , Semillas/genética , Sorghum/genética , Alelos , Etiopía , Frecuencia de los Genes , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica/métodos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Banco de Semillas , Selección Genética , Sorghum/clasificación , Estados Unidos , United States Department of Agriculture
7.
PLoS One ; 9(12): e116184, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551388

RESUMEN

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied.


Asunto(s)
Productos Agrícolas/genética , Variación Genética/genética , Ipomoea batatas/genética , Secuencia de Bases , ADN de Plantas/genética , Marcadores Genéticos/genética , Genotipo , Filogenia , Puerto Rico , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA