Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Agric Food Chem ; 72(32): 18214-18224, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101349

RESUMEN

Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.


Asunto(s)
Glicosiltransferasas , Edulcorantes , Glicosiltransferasas/genética , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Cucurbitaceae/química , Cucurbitaceae/enzimología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biocatálisis , Dominio Catalítico , Ingeniería de Proteínas , Especificidad por Sustrato , Cinética
2.
J Integr Plant Biol ; 66(8): 1703-1717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953746

RESUMEN

Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.


Asunto(s)
Aporfinas , Sistema Enzimático del Citocromo P-450 , Saccharomyces cerevisiae , Aporfinas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo , Stephania/metabolismo , Stephania/química , Alcaloides/biosíntesis , Alcaloides/metabolismo , Vías Biosintéticas
3.
J Chem Inf Model ; 64(9): 3933-3941, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38666964

RESUMEN

ß-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra ß-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.


Asunto(s)
Biocatálisis , Dominio Catalítico , Transferasas Intramoleculares , Simulación de Dinámica Molecular , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Mutagénesis Sitio-Dirigida
4.
Nucleic Acids Res ; 52(D1): D1347-D1354, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870445

RESUMEN

Medicinal plants have garnered significant attention in ethnomedicine and traditional medicine due to their potential antitumor, anti-inflammatory and antioxidant properties. Recent advancements in genome sequencing and synthetic biology have revitalized interest in natural products. Despite the availability of sequenced genomes and transcriptomes of these plants, the absence of publicly accessible gene annotations and tabular formatted gene expression data has hindered their effective utilization. To address this pressing issue, we have developed IMP (Integrated Medicinal Plantomics), a freely accessible platform at https://www.bic.ac.cn/IMP. IMP curated a total of 8 565 672 genes for 84 high-quality genome assemblies, and 2156 transcriptome sequencing samples encompassing various organs, tissues, developmental stages and stimulations. With the integrated 10 analysis modules, users could simply examine gene annotations, sequences, functions, distributions and expressions in IMP in a one-stop mode. We firmly believe that IMP will play a vital role in enhancing the understanding of molecular metabolic pathways in medicinal plants or plants with medicinal benefits, thereby driving advancements in synthetic biology, and facilitating the exploration of natural sources for valuable chemical constituents like drug discovery and drug production.


Asunto(s)
Plantas Medicinales , Programas Informáticos , Transcriptoma , Mapeo Cromosómico , Genómica , Anotación de Secuencia Molecular , Plantas Medicinales/genética , Plantas Medicinales/química
5.
Chin J Nat Med ; 21(12): 938-949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143107

RESUMEN

Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/metabolismo , Vías Biosintéticas , Quinonas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Integr Plant Biol ; 65(10): 2320-2335, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688324

RESUMEN

Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Aconitum/genética , Aconitum/metabolismo , Multiómica , Diterpenos/metabolismo , Alcaloides/metabolismo , Transcriptoma/genética , Raíces de Plantas
7.
Plant Physiol Biochem ; 202: 107968, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37619270

RESUMEN

Members of the Aconitum genus within the Ranunculaceae family are known to accumulate a broad array of medicinal and toxic diterpenoid alkaloids (DAs). Historically, ent-copalyl diphosphate (ent-CPP) was considered the sole precursor in DAs biosynthesis. However, the recent discovery of ent-8,13-CPP synthase in A. gymnandrum Maxim., which participates in ent-atiserene biosynthesis, raises the question of whether this gene is conserved throughout the Aconitum genus. In this study, RNA sequencing and PacBio Iso-sequencing were employed to identify diterpene synthases (diTPSs) in four additional Aconitum species with distinct DA compositions. In vitro and in vivo analyses functionally characterized a diverse array of 10 class II and 9 class I diTPSs. In addition to the identification of seven class II diTPSs as ent-CPP synthases, three other synthases generating ent-8,13-CPP, 8,13-CPP, and 8α-hydroxy-CPP were also discovered. Four class I kaurene synthases-like (KSLs) were observed to react with ent-CPP to yield ent-kaurene. Three KSLs not only reacted with ent-CPP but also ent-8,13-CPP to produce ent-atiserene. AsiKSL2-1 was found to react with 8α-hydroxy-CPP to produce Z-abienol and AsiKSL2-2 exhibited no activity with any of the four intermediates. This research delineates the known diterpene biosynthesis pathways in six Aconitum species and explores the highly divergent diterpene synthases within the genus, which are consistent with their phylogeny and may be responsible for the differential distribution of diterpenoid alkaloids in root and aerial parts. These findings contribute valuable insights into the diversification of diterpene biosynthesis and establish a solid foundation for future investigation into DA biosynthetic pathways in Aconitum.


Asunto(s)
Aconitum , Diterpenos , Aconitum/genética , Óxido Nítrico Sintasa , Filogenia
8.
J Cell Physiol ; 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357496

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a class of secondary metabolites that possess diverse pharmaceutical properties and are exclusively accumulated in specific plant genera. The Pictet-Spengler condensation, catalyzed by norcoclaurine synthase (NCS), represents a key enzymatic reaction in the biosynthetic pathway of BIAs. While NCS genes have been identified in several plant families such as Papaveraceae, Berberidaceae, and Ranunculaceae, no NCS genes have been reported in Menispermaceae, which is another genus known to accumulate BIAs. Here, NCSs were isolated and functionally characterized from the Menispermaceae family plant Stephania tetrandra. In vitro enzyme assay identified two functional StNCSs which could catalyze the formation of (S)-norcoclaurine. These functionally characterized genes were then integrated into engineered yeast to enable the production of norcoclaurine. Phylogenetic analysis of the NCS enzymes revealed that the StNCSs predominantly clustered into two clades. The functional StNCSs clustered with known NCSs, highlighting the presence of a specific NCS catalytic domain. This study not only provides additional genetic components for the synthetic biology-based production of BIAs in yeast but also contributes to the understanding of the phylogenetic relationships and structure-function relationship of NCS genes involved in the origin and production of BIAs.

9.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282859

RESUMEN

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Asunto(s)
Transferasas Alquil y Aril , Cinnamomum camphora , Cinnamomum camphora/enzimología , Transferasas Alquil y Aril/química
10.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239808

RESUMEN

Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese herb with significant medicinal value. The yield and quality of Danshen are greatly affected by climatic conditions, in particular high temperatures. Heat shock factors (Hsfs) play important regulatory roles in plant response to heat and other environmental stresses. However, little is currently known about the role played by the Hsf gene family in S. miltiorrhiza. Here, we identified 35 SmHsf genes and classified them into three major groups: SmHsfA (n = 22), SmHsfB (n = 11), and SmHsfC (n = 2) using phylogenetic analysis. The gene structure and protein motifs were relatively conserved within subgroups but diverged among the different groups. The expansion of the SmHsf gene family was mainly driven by whole-genome/segmental and dispersed gene duplications. The expression profile of SmHsfs in four distinct organs revealed its members (23/35) are predominantly expressed in the root. The expression of a large number of SmHsfs was regulated by drought, ultraviolet, heat and exogenous hormones. Notably, the SmHsf1 and SmHsf7 genes in SmHsfB2 were the most responsive to heat and are conserved between dicots and monocots. Finally, heterologous expression analysis showed that SmHsf1 and SmHsf7 enhance thermotolerance in yeast. Our results provide a solid foundation for further functional investigation of SmHsfs in Danshen plants as a response to abiotic stresses.


Asunto(s)
Salvia miltiorrhiza , Termotolerancia , Saccharomyces cerevisiae/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Termotolerancia/genética , Filogenia , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
11.
Microb Cell Fact ; 22(1): 23, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737755

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Bencilisoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/metabolismo
12.
J Ethnopharmacol ; 307: 116204, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36720435

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Semen Ziziphi Spinosae (SZS), the seed of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Chinese name Suan-Zao-Ren), is widely distributed in China, Laos, Myanmar, and Iran. It is a classic traditional Chinese medicine with sedative and sleeping effects. In clinical practice, there are more than 155 proprietary Chinese medicines containing SZS. However, many commercial SZS products are difficult to qualify using current methods. Moreover, there is a scarcity of quality standards for SZS in proprietary Chinese medicines. AIM OF THE STUDY: The purpose of this study was to clearly reveal the quality indicators during the entire production process of SZS and its products. MATERIALS AND METHODS: This study reviewed more than 230 articles and related books on the quality control of SZS and its proprietary Chinese medicines published over the last 40 years (from January 1979 to October 2022). Moreover, where available, information on the quality of SZS and its proprietary Chinese medicines was also collected from websites for comparison, including online publications (e.g. PubMed, CNKI, Google Scholar, and Web of Science), the information at Yaozhi website and China Medical Information Platform, along with some classic books on Chinese herbal medicine. The literature and information search were conducted using keywords such as "Suan-Zao-Ren", " Ziziphus jujuba" and "quality control", and the latest results from various databases were combined to obtain valid information. The active components, which in vivo exposure, and Q-markers were also summarized. RESULTS: The jujuboside A, jujuboside B, and spinosin were revealed as the key Q-markers for SZS. Moreover, the advancements and prospects of the quality control for SZS and its extract, proprietary Chinese medicines, health foods, and adulterants were comprehensively summarized. The high-performance liquid chromatography-UV/evaporative light scattering detection and fingerprint analysis were found to be the mainstream methods for the SZS quality control. In particular, the novel quality evaluation method based on the unit content was applied for SZS and its proprietary Chinese medicines. Significant fluctuations were found in the contents of Q-markers. Moreover, the mass transfer rule of Q-markers was comprehensively clarified based on the entire production process, including production origins, ripening time, primary process, processing, compatibility decoction/extract, and storage. Ultimately, the crushing and compatibility of SZS were found to be the key steps affecting the active components. CONCLUSIONS: In short, this study provides solid evidences to reveal quality indicators for the entire production process of developing rational quality standards for SZS and its products. Moreover, this study also provides a template quality control overview, which could be extended to other traditional Chinese medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Ziziphus , Medicamentos Herbarios Chinos/farmacología , Cromatografía Líquida de Alta Presión/métodos , Medicina Tradicional China , Control de Calidad
13.
Plant Biotechnol J ; 21(1): 165-175, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36161753

RESUMEN

Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.


Asunto(s)
Transferasas Alquil y Aril , Diterpenos , Transferasas Alquil y Aril/genética , Diterpenos/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362268

RESUMEN

Diterpene alkaloids (DAs) are characteristic compounds in Aconitum, which are classified into four skeletal types: C18, C19, C20, and bisditerpenoid alkaloids. C20-DAs are thought to be the precursor of the other types. Their biosynthetic pathway, however, is largely unclear. Herein, we combine metabolomics and transcriptomics to unveil the methyl jasmonate (MJ) inducible biosynthesis of DAs in the sterile seedling of A. gymnandrum, the only species in the Subgenus Gymnaconitum (Stapf) Rapaics. Target metabolomics based on root and aerial portions identified 51 C19-DAs and 15 C20-DAs, with 40 inducible compounds. The highest content of C20-DA atisine was selected for further network analysis. PacBio Isoform sequencing integrated with RNA sequencing not only provided the full-length transcriptome but also their response to induction, revealing 1994 genes that exhibited up-regulated expression. Further, 38 genes involved in terpenoid biosynthesis were identified, including 7 diterpene synthases. In addition to the expected function of the four diterpene synthases, AgCPS5 was identified to be a new ent-8,13-CPP synthase in Aconitum and could also combine with AgKSL1 to form the C20-DAs precursor ent-atiserene. Combined with multiple network analyses, six CYP450 and seven 2-ODD genes predicted to be involved in the biosynthesis of atisine were also identified. This study not only sheds light on diterpene synthase evolution in Aconitum but also provides a rich dataset of full-length transcriptomes, systemic metabolomes, and gene expression profiles, setting the groundwork for further investigation of the C20-DAs biosynthesis pathway.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Aconitum/genética , Aconitum/metabolismo , Transcriptoma , Alcaloides/metabolismo , Diterpenos/metabolismo , Vías Biosintéticas/genética
15.
Hortic Res ; 9: uhac152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168544

RESUMEN

O-methyltransferases play essential roles in producing structural diversity and improving the biological properties of benzylisoquinoline alkaloids (BIAs) in plants. In this study, Corydalis yanhusuo, a plant used in traditional Chinese medicine due to the analgesic effects of its BIA-active compounds, was employed to analyze the catalytic characteristics of O-methyltransferases in the formation of BIA diversity. Seven genes encoding O-methyltransferases were cloned, and functionally characterized using seven potential BIA substrates. Specifically, an O-methyltransferase (CyOMT2) with highly efficient catalytic activity of both 4'- and 6-O-methylations of 1-BIAs was found. CyOMT6 was found to perform two sequential methylations at both 9- and 2-positions of the essential intermediate of tetrahydroprotoberberines, (S)-scoulerine. Two O-methyltransferases (CyOMT5 and CyOMT7) with wide substrate promiscuity were found, with the 2-position of tetrahydroprotoberberines as the preferential catalytic site for CyOMT5 (named scoulerine 2-O-methyltransferase) and the 6-position of 1-BIAs as the preferential site for CyOMT7. In addition, results of integrated phylogenetic molecular docking analysis and site-directed mutation suggested that residues at sites 172, 306, 313, and 314 in CyOMT5 are important for enzyme promiscuity related to O-methylations at the 6- and 7-positions of isoquinoline. Cys at site 253 in CyOMT2 was proved to promote the methylation activity of the 6-position and to expand substrate scopes. This work provides insight into O-methyltransferases in producing BIA diversity in C. yanhusuo and genetic elements for producing BIAs by metabolic engineering and synthetic biology.

16.
Hortic Res ; 9: uhac140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072835

RESUMEN

Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.

17.
Front Plant Sci ; 13: 947674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873989

RESUMEN

Salvia miltiorrhiza is one of the most commonly used Chinese medicinal herbs. Tanshinones, the most abundant lipid-soluble bioactive constituents of S. miltiorrhiza, are a class of structural highly oxidized abietane-type diterpenoids with multiple pharmacological activities. Although several enzymes, including diterpene synthase, cytochrome P450, and Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD), have been functionally characterized in biosynthesis of abietane-type diterpenoids, the highly oxidized structure and complex secondary metabolic network of tanshinones imply that more oxidases should be characterized. Here, we identified a new 2OGD (Sm2OGD25) from S. miltiorrhiza. Molecular cloning and functional studies in vitro showed that Sm2OGD25 could catalyze the hydroxylation of sugiol at C-15 and C-16 positions to produce hypargenin B and crossogumerin C, respectively. The phylogenetic analysis of the DOXC family demonstrated that Sm2OGD25 belongs to the DOXC54 clade. Furthermore, structural modeling and site-directed mutagenesis characterization revealed the importance of the hydrogen-bonding residue Y339 and the hydrophobic residues (V122, F129, A144, A208, F303, and L344) in substrate binding and enzyme activity. This study will promote further studies on the catalytic characterization of plant 2OGDs and the secondary metabolic biosynthesis network of diterpenoids.

18.
Front Plant Sci ; 13: 921815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774804

RESUMEN

Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-ß-D-glucoside and lariciresinol-4,4'-bis-O-ß-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.

19.
Front Pharmacol ; 13: 883898, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662724

RESUMEN

The herb-pair ginseng-Fuzi (the root of Aconitum carmichaelii) is the material basis of Shenfu prescriptions and is popular in traditional Chinese medicine for the treatment of heart failure, and even shock with severe-stage of COVID-19. A narrow therapeutic window of Fuzi may cause significant regional loss of property and life in clinics. Therefore, systemic elucidation of active components is crucial to improve the safety dose window of Shenfu oral prescriptions. A high performance liquid chromatography-mass spectrometry method was developed for quantification of 10 aconitines in SD rat plasma within 9 min. The limit of detection and the limit of quantification were below 0.032 ng/ml and 0.095 ng/ml, respectively. Furthermore, a systemic comparison with their pharmacokinetic characteristics after oral administration of a safe dosage of 2 g/kg of Fuzi and ginseng-Fuzi decoction for 24 h was conducted. Eight representative diester, monoester, and non-ester aconitines and two new active components (i.e., songorine and indaconitine) were all adopted to elucidating the differences of the pharmacokinetic parameters in vivo. The compatibility of Fuzi and ginseng could significantly increase the in vivo exposure of active components. The terminal elimination half-life and the area under the concentration-time curve of mesaconitine, benzoylaconitine, benzoylmesaconitine, benzoylhypaconitine, and songorine were all increased significantly. The hypaconitine, benzoylmesaconitine, and songorine were regarded as the main active components in vivo, which gave an effective clue for the development of new Shenfu oral prescriptions.

20.
Plant Sci ; 317: 111203, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35193750

RESUMEN

Cinnamomum burmannii is a traditional plant that has long been used as a spice, food preservative, and food flavoring. Essential oils in C. burmannii, which mainly consist of mono- and sesquiterpenes such borneol, linalool, and caryophyllene, have impressive pharmaceutical properties. Although the transcriptome-based discovery of (+)-bornyl diphosphate synthase (CbTPS1) from C. burmannii was reported in our previous study, the remaining terpene synthases (TPSs) corresponding to various terpene biosynthesis pathways remain unidentified. In this study, we report the results of RNA-sequencing of a borneol type plant and functional characterization of six additional full-length candidate TPS genes (named CbTPS2-7). Phylogenetic analysis revealed that CbTPS2 and CbTPS3 together with the previously identified CbTPS1 protein belong to the TPS-b subfamily, and enzyme assays using geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) as substrates revealed that CbTPS1, CbTPS2 and CbTPS3 catalyze the formation of monoterpenes. CbTPS4, CbTPS5, and CbTPS6, which belong to the TPS-a clade, generated monoterpenes and sesquiterpenes. CbTPS7, which belongs to the TPS-g clade, showed linalool/nerolidol synthase activity. These CbTPSs identified in C. burmannii produced a total of 10 monoterpenes and 14 sesquiterpenes in an in vitro assay. These findings clarify the biosynthesis pathways of 13 monoterpenoids and 12 sesquiterpenoids in the leaf essential oil of C. burmannii and shed light on terpene biosynthesis in Cinnamomum.


Asunto(s)
Transferasas Alquil y Aril , Cinnamomum , Aceites Volátiles , Sesquiterpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas , Cinnamomum/metabolismo , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...