Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Sci Total Environ ; 949: 175108, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089377

RESUMEN

Winter wheat production is influenced by climate extremes worldwide. Heavy precipitation induced delay of sowing generates limited photothermal resources for wheat early growth. However, how wheat build resilience from stunted seedling growth has not been fully explored. Here, a twelve-year farmers' survey of wheat yield was recorded and four-year field experiments of wheat grown in normal and late-sowing were performed under zero nitrogen (N0) and optimum nitrogen (Opt.N) supply. Wheat growth and N uptake were measured at both vegetative and reproductive stages alongside photothermal resource-use efficiency. Farmers' survey showed 10.4 % yield losses due to delayed sowing compared to the normal. However, four-year field trials revealed that the combination of increasing seeding rates and Opt.N application recovered grain yield of sowing-delayed wheat and even increased by 13.2 % compared to plants in the normal seasons. Although delayed sowing substantially suppressed seedling growth and tillering before winter dormancy, the Opt.N application increased spring tillers by 2.4-fold which were productive at maturity. Further, plant growth and N uptake from jointing to anthesis of sowing-delayed wheat were accelerated by Opt.N, but not by N0 treatment. Delayed sowing significantly shortened the duration of lag phase of grain filling by 3.5 days and by 183 growing degree days compared with the normal, which initiated the linear and fast filling earlier. Increased leaf photosynthesis by 27.4 % during grain filling further supported the fast recovery of grain filling in the sowing-delayed wheat. Concomitantly, the physiological N-use efficiency increased by 46.7 % during grain filling and by 41.5 % at maturity by enhancing N availability and seeding rates, and photothermal resource-use efficiency increased by 1.3- to 1.7-fold for wheat with delayed vs. normal sowing. Overall, these findings highlight the integrated management of nutrient and cultivation to mitigate the impacts of climate extremes on crop productivity through building plant reproductive resilience.


Asunto(s)
Nitrógeno , Estaciones del Año , Triticum , Triticum/crecimiento & desarrollo , Nitrógeno/metabolismo , Fertilizantes , Producción de Cultivos/métodos , Agricultura/métodos
2.
Glob Chang Biol ; 30(8): e17460, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136170

RESUMEN

New soil organic carbon (SOC) formation in cropland from straw/stover or manure input is a vital source of SOC for climate change mitigation. However, location and variations in the efficiency, specifically the ratio of new SOC formation to organic C input (NCE), remain unquantified globally. In this study, the spatial variability of cropland NCE from straw/stover or manure input and explanatory factors were determined by analyzing 897 pairs of long-term field measurements from 404 globally distributed sites and by mapping grid-level cropland NCEs. The global NCE for paddy and upland averaged 13.8% (8.7%-25.1%, 5th-95th percentile) and 10.9% (6.8%-17.3%), respectively. The initial SOC and the clay content of soil, rather than temperature, were the most important factors regulating NCE. A parabola with an apex at approximately 17 g kg-1 between the initial SOC and NCE was resolved, and a positive correlation between soil clay content and NCE was observed. High-resolution mapping of the global NCE derived from manure/straw and insight into NCE dynamics provide a benchmark for diagnosing cropland soil C dynamics under climate change and identifying priority regions and actions for C management.


Asunto(s)
Carbono , Estiércol , Suelo , Estiércol/análisis , Suelo/química , Carbono/análisis , Agricultura/métodos , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo
3.
Front Microbiol ; 15: 1418090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946901

RESUMEN

Tobacco continuous cropping is prevalent in intensive tobacco agriculture but often leads to microbial community imbalance, soil nutrient deficiency, and decreased crop productivity. While the tobacco-rape rotation has demonstrated significant benefits in increasing tobacco yield. Microorganisms play a crucial role in soil nutrient cycling and crop productivity. However, the internal mechanism of tobacco-rape rotation affecting tobacco yield through microbe-soil interaction is still unclear. In this study, two treatments, tobacco continuous cropping (TC) and tobacco-rape rotation (TR) were used to investigate how planting systems affect soil microbial diversity and community structure, and whether these changes subsequently affect crop yields. The results showed that compared with TC, TR significantly increased the Shannon index, Chao1 index, ACE index of bacteria and fungi, indicating increased microbial α-diversity. On the one hand, TR may directly affect the bacterial and fungal community structure due to the specificity of root morphology and root exudates in rape. Compared with TC, TR significantly increased the proportion of beneficial bacterial and fungal taxa while significantly reduced soil-borne pathogens. Additionally, TR enhanced the scale and complexity of microbial co-occurrence networks, promoting potential synergies between bacterial OTUs. On the other hand, TR indirectly changed microbial community composition by improving soil chemical properties and changing microbial life history strategies. Compared with TC, TR significantly increased the relative abundance of copiotrophs while reduced oligotrophs. Notably, TR significantly increased tobacco yield by 39.6% compared with TC. The relationships among yield, microbial community and soil chemical properties indicated that planting systems had the greatest total effect on tobacco yield, and the microbial community, particularly bacteria, had the greatest direct effect on tobacco yield. Our findings highlighted the potential of tobacco-rape rotation to increase yield by both directly and indirectly optimizing microbial community structure.

4.
Nat Food ; 5(7): 581-591, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982281

RESUMEN

China's imports of livestock feed, particularly protein-rich feeds, pose challenges to global environmental sustainability. Achieving protein self-sufficiency for food and feed in China without exceeding environmental boundaries requires integrated measures and optimization of China's food system. Here we propose holistic food system innovation strategies consisting of three components-technological innovation, integrated spatial planning and demand-side options-to reduce protein import dependency and promote global environmental sustainability. We find that food system innovations can close almost 80% of China's future protein gaps while reducing 57-85% of agricultural import-embodied environmental impacts. Deploying these innovations would also reduce greenhouse gas emissions (22-27%) and people's harmful exposure to ammonia (73-81%) compared with the baseline scenario in 2050. Technological innovations play a key role in closing protein gaps, while integrated crop-livestock spatial planning is imperative for achieving environmental and health targets.


Asunto(s)
Proteínas en la Dieta , China , Humanos , Animales , Abastecimiento de Alimentos , Ambiente , Ganado , Agricultura , Alimentación Animal/análisis , Conservación de los Recursos Naturales , Productos Agrícolas , Gases de Efecto Invernadero/efectos adversos
5.
Nat Food ; 5(6): 499-512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849568

RESUMEN

The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country's well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China's crop-livestock system is responsible for exceeding what is considered a 'just' threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a 'safe' water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop-livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050.


Asunto(s)
Productos Agrícolas , Fertilizantes , Fósforo , Fósforo/análisis , China , Productos Agrícolas/crecimiento & desarrollo , Animales , Fertilizantes/análisis , Ganado , Agricultura/métodos , Calidad del Agua
6.
Nat Food ; 5(5): 351-352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719982
7.
ACS Sens ; 9(6): 2846-2857, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807313

RESUMEN

Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.


Asunto(s)
Técnicas Biosensibles , ARN Mensajero , Técnicas Biosensibles/métodos , ARN Mensajero/genética , ARN Mensajero/análisis , Humanos , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
8.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742695

RESUMEN

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Asunto(s)
Carbono , Fertilizantes , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Fertilizantes/análisis , Ciclo del Carbono , Microbiota
9.
J Environ Manage ; 358: 120752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614004

RESUMEN

Anthropogenic reactive nitrogen (Nr) loss has been a critical environmental issue. However, due to the limitations of data availability and appropriate methods, the estimation of Nr loss from rice paddies and associated spatial patterns at a fine scale remain unclear. Here, we estimated the background Nr loss (BNL, i.e., Nr loss from soils without fertilization) and the loss factors (the percentage of Nr loss from synthetic fertilizer, LFs) for five loss pathways in rice paddies and identified the national 1 × 1 km spatial variations using data-driven models combined with multi-source data. Based on established machine learning models, an average of 23.4% (15.3-34.6%, 95% confidence interval) of the synthetic N fertilizer was lost to the environment, in the forms of NH3 (17.4%, 10.9-26.7%), N2O (0.5%, 0.3-0.8%), NO (0.2%, 0.1-0.4%), N leaching (3.1%, 0.8-5.7%), and runoff (2.3%, 0.6-4.5%). The total Nr loss from Chinese rice paddies was estimated to be 1.92 ± 0.52 Tg N yr-1 in 2021, in which synthetic fertilizer-induced Nr loss accounted for 69% and BNL accounted for the other 31%. The hotspots of Nr loss were concentrated in the middle and lower regions of the Yangtze River, an area with extensive rice cultivation. This study improved the estimation accuracy of Nr losses and identified the hotspots, which could provide updated insights for policymakers to set the priorities and strategies for Nr loss mitigation.


Asunto(s)
Fertilizantes , Nitrógeno , Oryza , Suelo , Agricultura , China , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/química
10.
Nat Food ; 5(3): 241-250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486125

RESUMEN

Returning organic nutrient sources (for example, straw and manure) to rice fields is inevitable for coupling crop-livestock production. However, an accurate estimate of net carbon (C) emissions and strategies to mitigate the abundant methane (CH4) emission from rice fields supplied with organic sources remain unclear. Here, using machine learning and a global dataset, we scaled the field findings up to worldwide rice fields to reconcile rice yields and net C emissions. An optimal organic nitrogen (N) management was developed considering total N input, type of organic N source and organic N proportion. A combination of optimal organic N management with intermittent flooding achieved a 21% reduction in net global warming potential and a 9% rise in global rice production compared with the business-as-usual scenario. Our study provides a solution for recycling organic N sources towards a more productive, carbon-neutral and sustainable rice-livestock production system on a global scale.


Asunto(s)
Nitrógeno , Oryza , Animales , Nitrógeno/análisis , Agricultura , Suelo , Carbono , Agua , Óxido Nitroso/análisis , Fertilizantes/análisis , Ganado
11.
Sci Data ; 11(1): 251, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418828

RESUMEN

Livestock constitute the world's largest anthropogenic source of methane (CH4), providing high-protein food to humans but also causing notable climate risks. With rapid urbanization and increasing income levels in China, the livestock sector will face even higher emission pressures, which could jeopardize China's carbon neutrality target. To formulate targeted methane reduction measures, it is crucial to estimate historical and current emissions on fine geographical scales, considering the high spatial heterogeneity and temporal variability of livestock emissions. However, there is currently a lack of time-series data on city-level livestock methane emissions in China, despite the flourishing livestock industry and large amount of meat consumed. In this study, we constructed a city-level livestock methane emission inventory with dynamic spatial-temporal emission factors considering biological, management, and environmental factors from 2010 to 2020 in China. This inventory could serve as a basic database for related research and future methane mitigation policy formulation, given the population boom and dietary changes.


Asunto(s)
Ganado , Metano , Animales , China , Metano/análisis , Urbanización
12.
Nat Food ; 5(1): 13-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168778
13.
ACS Synth Biol ; 13(2): 449-456, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38268082

RESUMEN

Eukaryotic cell-free protein expression systems enable rapid production of recombinant multidomain proteins in their functional form. A cell-free system based on the rapidly growing protozoan Leishmania tarentolae (LTE) has been extensively used for protein engineering and analysis of protein interaction networks. However, like other eukaryotic cell-free systems, LTE deteriorates at ambient temperatures and requires deep freezing for transport and storage. In this study, we report the development of a lyophilized version of LTE. Use of lyoprotectants such as poly(ethylene glycol) and trehalose during the drying process allows retention of 76% of protein expression activity versus nonlyophilized controls. Lyophilized LTE is capable of withstanding storage at room temperature for over 2 weeks. We demonstrated that upon reconstitution the lyophilized LTE could be used for in vitro expression of active enzymes, analysis of protein-protein interactions by AlphaLISA assay, and functional analysis of protein biosensors. Development of lyophilized LTE lowers the barriers to its distribution and opens the door to its application in remote areas.


Asunto(s)
Leishmania , Leishmania/metabolismo , Sistema Libre de Células/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Proteómica
14.
Sci Total Environ ; 905: 167115, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717770

RESUMEN

China is one of the largest producers of livestock production and also with tremendous fertilizer consumption in crop production, regional decoupling between livestock and crop production often results in fertilizer overuse and environmental pollution. However, city-level coupling analysis between livestock and crop production is rare, and its impact on fertilizer usage also remains unclear. Here, we evaluated the nitrogen (N) nutrient supply from the livestock breeding sector and the N nutrient demand of cropland during the 2007-2020 period in a typical agricultural region in China. The city-level coupling degree of livestock and crop production and the effect on fertilizer usage were explored with spatial analysis and regression methods. Our results show that the province level has a relatively high coupling degree. However, significant spatial heterogeneity was found at the city level, especially in western Sichuan Province due to the highly unbalanced distribution of livestock and crop production, and this decoupling phenomenon may hinder fertilizer reduction. Furthermore, we reveal that technological development is not an effective way to achieve sustainable agriculture without other policy instruments, such as livestock spatial relocation, which must be considered when formulating crop-livestock integration policies. The findings expand city-level knowledge of the livestock-crop system and provide important implications for adjusting agricultural practices to realize sustainable agricultural development.


Asunto(s)
Fertilizantes , Ganado , Animales , Producción de Cultivos , Agricultura/métodos , China , Nitrógeno
15.
Front Plant Sci ; 14: 1144514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746013

RESUMEN

Fertilizer-based biofortification is a strategy for combating worldwide malnutrition of zinc (Zn), iron (Fe) and selenium (Se). Field experiments were conducted to investigate the effects of foliar treatments on concentrations of Zn, Fe, Se, N and bioavailability of Zn and Fe in grains of three maize cultivars grown at three locations. We compared the efficacy of ZnO nanoparticles (ZnO-NPs), Zn complexed chitosan nanoparticles (Zn-CNPs), conventional ZnSO4 and a cocktail solution (containing Zn, Fe and Se). All treatments were foliar-applied at rate of 452 mg Zn L-1, plus urea. Applying ten-fold less Zn (at rate of 45.2 mg Zn L-1) plus urea in the form of ZnO-NPs, Zn-CNPs, or ZnSO4 resulted in no increase, or a negligible increase, in grain Zn concentration compared with deionized water. By contrast, among the different Zn sources plus urea applied by foliar sprays, conventional ZnSO4 was the most efficient in improving grain Zn concentration. Furthermore, foliar application of a cocktail solution effectively improved grain concentrations of Zn, Fe, Se and N simultaneously, without a grain yield trade-off. For example, the average grain concentrations were simultaneously increased from 13.8 to 22.1 mg kg-1 for Zn, from 17.2 to 22.1 mg kg-1for Fe, from 21.4 to 413.5 ug kg-1 for Se and from 13.8 to 14.7 g kg-1 for N by foliar application of a cocktail solution. Because grain yield was significantly negatively correlated with grain nutrient concentrations, the magnitude of increase in grain concentrations of Zn and Fe was most pronounced in the maize cultivar with the lowest grain yield (Zhengdan958 grown in Linyi). Foliar application of a cocktail solution also significantly decreased the phytic acid (PA) concentration, ratios of PA/Fe and PA/Zn in grains, indicating an increased bioavailability of Fe and Zn for human health. In conclusion, we found that a foliar application of a cocktail solution including Zn, Fe, Se and N was most effective for biofortification, but that the grains with the lowest yield contained the greatest concentration of these elements. This finding highlights the need to breed maize varieties that are capable of achieving both high grain yield and high grain nutritional quality to address food security and human health challenges.

16.
Nat Food ; 4(9): 751-761, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653045

RESUMEN

Reducing cropland ammonia (NH3) emissions while improving air quality and food supply is a challenge, particularly in China where there are millions of smallholder farmers. We tested the effectiveness of a tailored nitrogen (N) management strategy applied to wheat-maize cropping systems in 'demonstration squares' across Quzhou County in the North China Plain. The N-management techniques included optimal N rates, deep fertilizer placement and application of urease inhibitors, implemented through cooperation between government, researchers, businesses and smallholders. Compared with conventional local smallholder practice, our NH3 mitigation campaign reduced NH3 volatilization from wheat and maize by 49% and 39%, and increased N-use efficiency by 28% and 40% and farmers' profitability by 25% and 19%, respectively, with no detriment to crop yields. County-wide atmospheric NH3 and fine particulate matter (with aerodynamic diameter <2.5 µm) concentrations decreased by 40% and 8%, respectively. County-wide net benefits were estimated at US$7.0 million. Our demonstration-square approach shows that cropland NH3 mitigation and improved air quality and farm profitability can be achieved simultaneously by coordinated actions at the county level.


Asunto(s)
Amoníaco , Agricultores , Humanos , Grano Comestible , Granjas , China , Triticum , Zea mays
17.
Glob Chang Biol ; 29(20): 5955-5967, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37462298

RESUMEN

Soils are a major source of global nitric oxide (NO) emissions. However, estimates of soil NO emissions have large uncertainties due to limited observations and multifactorial impacts. Here, we mapped global soil NO emissions, integrating 1356 in-situ NO observations from globally distributed sites with high-resolution climate, soil, and management practice data. We then calculated global and national total NO budgets and revealed the contributions of cropland, grassland, and forest to global soil NO emissions at the national level. The results showed that soil NO emissions were explained mainly by N input, water input and soil pH. Total above-soil NO emissions of the three vegetation cover types were 9.4 Tg N year-1 in 2014, including 5.9 Tg N year-1 (1.04, 95% confidence interval [95% CI]: 0.09-1.99 kg N ha-1 year-1 ) emitted from forest, 1.7 Tg N year-1 (0.68, 95% CI: 0.10-1.26 kg N ha-1 year-1 ) from grassland, and 1.8 Tg N year-1 (0.98, 95% CI: 0.42-1.53 kg N ha-1 year-1 ) from cropland. Soil NO emissions in approximately 57% of 213 countries surveyed were dominated by forests. Our results provide updated inventories of global and national soil NO emissions based on robust data-driven models. These estimates are critical to guiding the mitigation of soil NO emissions and can be used in combination with biogeochemical models.


Asunto(s)
Óxido Nítrico , Suelo , Óxido Nitroso/análisis , Bosques , Clima
18.
ACS Omega ; 8(28): 25009-25019, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483225

RESUMEN

The emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on Leishmania tarentolae extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics. We produced and tested 54 putative human-viral protein pairs in vitro and identified 45 direct binary protein interactions. As a casing example of the assay's suitability for drug development applications, we analyzed the effect of a putative biologic on the human angiotensin-converting enzyme 2/receptor-binding domain (hACE2/RBD) interaction. This suggests that the presented pathogen characterization platform can facilitate the development of new therapeutic agents.

19.
J Sci Food Agric ; 103(15): 7816-7828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37450651

RESUMEN

BACKGROUND: Efficient utilization of phosphorus (P) has been a major challenge for sustainable agriculture. However, the responses of fertilizer rate, region, soil properties, cropping systems and genotypes to P have not been investigated comprehensively and systematically. RESULTS: A comprehensive analysis of 9863 fertilizer-P experiments on rice cultivation in China showed that rice yield  increased first and then fell down with the addition of P fertilizer, and the highest yield of 7963 kg ha-1 was observed under 100% P treatment. Under 100% P treatment, the yield response of applied P (YRP ) and agronomic efficiency of applied P (AEP ) were 12.8% and 30.1 kg ha-1 , respectively. Lower soil pH (< 5.5) and organic matter (< 30.0 g kg-1 ) were associated with lower YRP and AEP . By contrast, soil available P < 25.0 mg kg-1 resulted in decreased YRP (15.3 to 11.4%) and AEP (32.3 kg kg-1 to 26.2 kg kg-1 ), whereas soil available P > 25.0 mg kg-1 maintained the relatively stable YRP and AEP . Also, the YRP and AEP were significantly higher for single-cropping rice compared to other cropping systems. Moreover, the rice genotypes such as 'Longdun', 'Kendao' and 'Jigeng' had higher YRP and AEP than the average value. Overall, the fertilizer-P rate was the primary factor affecting YRP and AEP , and the recommended P fertilizer rate can be reduced by 9-21 kg P ha-1 compared to existing expert recommendations. CONCLUSION: The present study highlights the role of fertilizer-P rate in maximizing the YRP and AEP , thereby providing a strong basis for future fertilizer management in rice cultivation systems. © 2023 Society of Chemical Industry.


Asunto(s)
Fertilizantes , Oryza , Agricultura/métodos , China , Fertilizantes/análisis , Nitrógeno/análisis , Oryza/crecimiento & desarrollo , Fósforo/análisis , Suelo/química
20.
Sci Data ; 10(1): 223, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076486

RESUMEN

China's rapid increase in mass excreta and its environmental discharge have attracted substantial attention. However, cropland as a main destination of excreta utilization has not been extensively evaluated. Here, a national survey was used to assess the utilization of manure in croplands across China. The data included the inputs of manure nitrogen (N), phosphorus (P), and potassium (K) for cereals, fruits, vegetables, and other crops, along with the manure proportion of total N, P, and K inputs at the county level. The results showed that the manure N, P, and K inputs were 6.85, 2.14, and 4.65 million tons (Mt), respectively, constituting 19.0%, 25.5%, and 31.1% of the total N, P, and K, respectively. The spatial distribution of the manure proportion of total inputs was lower in Eastern China and higher in Western China. The results provide a detailed description of the utilization of manure nutrients in agricultural areas throughout China, which will serve as basic support for policymakers and researchers involved in future agricultural nutrient management in China.


Asunto(s)
Agricultores , Estiércol , Humanos , Agricultura , China , Productos Agrícolas , Estiércol/análisis , Nitrógeno/análisis , Fósforo/análisis , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...