Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38276899

RESUMEN

The correct interpretation of infrared (IR) observations of planetary atmospheres requires an accurate knowledge of temperature and partial and global pressures. Precise laboratory measurements of absorption intensities and line profiles, in the 200-350 K temperature range, are, therefore, critical. However, for gases only existing in complex chemical equilibria, such as nitrous or hypobromous acids, it is not possible to rely on absolute pressure measurements to measure absolute integrated optical absorption cross sections or IR line intensities. To overcome this difficulty, a novel dual-beam terahertz (THz)/mid-IR experimental setup has been developed, relying on the simultaneous use of two instruments. The setup involves a newly constructed temperature-controlled (200-350 K) cross-shaped absorption cell made of inert materials. The cell is traversed by the mid-IR beam from a high-resolution Fourier transform spectrometer using along a White-cell optical configuration providing absorption path lengths from 2.8 to 42 m and by a THz radiation beam (82.5 GHz to 1.1 THz), probing simultaneously the same gaseous sample. The THz channel records pure rotational lines of molecules for which the dipole moment was previously measured with high precision using Stark spectroscopy. This allows for a determination of the partial pressure in the gaseous mixture and enables absolute line intensities to be retrieved for the mid-IR range. This new instrument opens a new possibility for the retrieval of spectroscopic parameters for unstable molecules of atmospheric interest. The design and performance of the equipment are presented and illustrated by an example of simultaneous THz and mid-IR measurement on nitrous acid (HONO) equilibrium.

2.
J Infrared Millim Terahertz Waves ; 41(8): 1009-1021, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837589

RESUMEN

In a chirped pulse experiment, the strength of the signal level is proportional to the amplitude of the electric field, which is weaker in the millimeter-wave or submillimeter-wave region than in the microwave region. Experiments in the millimeter region thus require an optimization of the coupling between the source and the molecular system and a method to estimate the amplitude of the electric field as seen by the molecular system. We have developed an analytical model capable of reproducing the coherent transient signals obtained with a millimeter-wave chirped pulse setup operated in a monochromatic pulse mode. The fit of the model against the experimental data allowed access to the amplitude of the electric field and, as a byproduct, to the molecular relaxation times T 1 and T 2.

3.
J Chem Phys ; 151(19): 194302, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757131

RESUMEN

Methoxyphenols (MPs) are a significant component of biomass burning emissions which mainly exists in our atmosphere in the gas phase where they contribute to the formation of secondary organic aerosols (SOAs). Rovibrational spectroscopy is a promising tool to monitor atmospheric MPs and infer their role in SOA formation. In this study, we bring a new perspective on the rovibrational analysis of MP isomers by taking advantage of two complementary devices combining jet-cooled environments and absorption spectroscopy: the Jet-AILES and the SPIRALES setups. Based on Q-branch frequency positions measured in the Jet-AILES Fourier-transform infrared (FTIR) spectra and guided by quantum chemistry calculations, we propose an extended vibrational and conformational analysis of the different MP isomers in their fingerprint region. Some modes such as far-IR out-of-plane -OH bending or mid-IR in-plane -CH bending allow us to assign individually all the stable conformers. Finally, using the SPIRALES setup with three different external cavity quantum cascade laser sources centered on the 930-990 cm-1 and the 1580-1690 cm-1 ranges, it was possible to proceed to the rovibrational analysis of the ν18 ring in-plane bending mode of the MP meta isomer providing a set of reliable excited state parameters, which confirms the correct assignment of two conformers. Interestingly, the observation of broad Q-branches without visible P- and R-branches in the region of the C-C ring stretching bands was interpreted as being probably due to a vibrational perturbation. These results highlight the complementarity of broadband FTIR and narrowband laser spectroscopic techniques to reveal the vibrational conformational signatures of atmospheric compounds over a large infrared spectral range.

4.
J Chem Phys ; 150(10): 104303, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30876373

RESUMEN

Because methoxyphenols (MP) are emitted in significant quantities during biomass fires and contribute to the secondary organic aerosols formation which impacts the climate, their gas phase monitoring in the atmosphere is crucial and requires accurate rovibrational cross sections determined with a good knowledge of their ground state (GS) and vibrationally excited state (ES) molecular parameters. Therefore, the rotational spectra of the two isomers, 2-MP (guaïacol) and 4-MP (mequinol), have been measured in absorption and in emission at room temperature using a frequency multiplication chain and a mm-wave Fourier transform chirped-pulse spectrometer, respectively. Guided by quantum chemistry calculations, the conformational landscape has been characterised and the observation of only one rotamer in the spectra of 2-MP and 4-MP has been explained. For 2-MP, the most stable conformation is justified by an intramolecular O-H⋯OCH3 hydrogen-bond which has been characterised by a topology analysis of the electron density. In a global fit including more than 30 000 line assignments, rotational and quartic centrifugal constants of the GS and the three lowest energy ES have been determined allowing to reproduce the millimeter-wave spectra at the experimental accuracy. The same work has been performed on the cis-rotamer of 4-MP highlighting some perturbations marring the fit quality for two vibrationally ES. Finally, the isomeric dependence of the negative inertial defect ΔI agrees with that of the lowest energy out of plane mode ν45, and the variation of ΔI with the degree of vibrational excitation allows a fine estimation of v45 = 1 vibrational wavenumber.

5.
J Mol Spectrosc ; 329: 35-42, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27812224

RESUMEN

For some temperatures of atmospheric interest from 200 to 298 K, the self-broadening coefficients of OCS-OCS and HCN-HCN collisional systems, at different strengths of electrostatic interactions, were calculated respectively for ν1 and ν2 bands for a wide range of rotational quantum numbers J. In particular, we have considered some lines that were not studied previously. We have employed the approximation of bi-resonance functions (Starikov, 2012) in the frame of the semiclassical model of Robert and Bonamy with exact trajectory (RBE). The calculated results are found to be fully consistent with the available experimental values of self-broadening coefficients of OCS and HCN. A comparative study shows that the RBE calculations reproduce the dependence of broadening coefficients on quantum number J much better than the simpler Robert and Bonamy model with parabolic trajectory (RB) for all considered temperatures.

6.
J Phys Chem B ; 120(23): 5278-90, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27214120

RESUMEN

Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor ß-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding patterns are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity of chain-like and tetrahedral dimorphous forms determine both the structural features and fundamental glass properties (thermal, electronic, etc.). DFT simulations of mercury species and RMC modeling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ≤ m ≤ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier.

7.
J Chem Phys ; 144(8): 084305, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26931700

RESUMEN

Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (r(e)(SE)) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

8.
J Phys Chem A ; 119(37): 9644-52, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26317485

RESUMEN

The structural and spectroscopic parameters of dimethyl sulfoxide (DMSO) are predicted from CCSD(T)-F12 calculations that can help to resolve the outstanding problem of the rovibrational spectroscopy. DMSO is a near oblate top that presents a trigonal pyramidal geometry. Rotational parameters are determined at the equilibrium and in selected vibrational states. For the ground state, the rotational constants were calculated to be A0 = 7031.7237 MHz, B0 = 6920.1221 MHz, and C0 = 4223.3389 MHz, at few megahertz from the previous experimental measurements. Ab initio calculations allow us to assert that DMSO rotational constants are strongly dependent on anharmonic effects. Asymmetry increases with the vibrational energy. Harmonic frequencies, torsional parameters, and a two-dimensional potential energy surface (2D-PES) focused to describe the internal rotation of the two methyl groups are determined at the CCSD(T)-F12 level of theory. For the medium and small amplitude motions, anharmonic effects are estimated with MP2 theory getting an excellent agreement with experimental data for the ν11 and ν23 fundamentals. Torsional energies and transitions are computed variationally form the 2D-PES that denotes strong interactions between both internal tops. The vibrationally corrected V3 torsional barrier is evaluated to be 965.32 cm(-1). The torsional splitting of the ground vibrational state has been estimated to be lower than 0.01 cm(-1). Although the ν13 torsional fundamental is found at 229.837 cm(-1) in good agreement with previous assessment, there is not accord for the low intense transition ν24. A new assignment predicting ν24 to lie between 190 and 195 cm(-1) is proposed.

9.
Nat Commun ; 6: 7733, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190043

RESUMEN

Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

10.
J Chem Phys ; 142(10): 104310, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770543

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm(-1) and 178 cm(-1), respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

11.
J Phys Chem B ; 114(50): 16936-47, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21114335

RESUMEN

The high brilliance of the AILES beamline at the SOLEIL synchrotron facility has been exploited for the study of the gas-phase vibrational spectra of weakly volatile organophosphorous compounds. The propagation of the synchrotron radiation in long path length gas cells allowed improvements in the sensitivity limits and spectral coverage compared with a previous study, performed by our group with conventional thermal sources. A ppm level detection in the entire IR domain up to terahertz (THz) frequencies has been realized for dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), triethyl phosphate (TEP), and diethyl (2-methylallyl)phosphonate (DEMaP). In the present study, the assignment of the gas-phase vibrational and the conformational analysis of the two most stable conformers of DMMP and TMP have been extended to the torsional THz spectra in the 20-120 cm(-1) range. The improvement of the S/N ratio below 600 cm(-1) has permitted for the first time a gas-phase conformational analysis of the two weakly volatile and highly flexible TEP and DEMaP compounds. The experimental far-infrared (FIR)/THz spectra have been studied taking into account four low-energy conformers determined by means of high level of theory quantum chemistry calculations. Finally, due to its particularly low vapor pressure, the detection of gas-phase tributyl phosphate (TBP) in the FIR domain was unsuccessful. Nevertheless, the mid-IR/near-IR spectra of TBP recorded in a multipass cell heated to 355 K have been assigned with the harmonic vibrational predictions of the most stable conformer.

12.
J Phys Chem B ; 112(39): 12516-25, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18781711

RESUMEN

Gas phase vibrational spectra of dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and triethyl phosphate (TEP) have been measured using FTIR spectroscopy. For DMMP, TMP, and TEP, most of the infrared active vibrational modes have been observed in the 50-5000 cm (-1) spectral range, allowing an unambiguous discrimination between the three molecules. The vibrational analysis of the spectra was performed by comparing with MP2 and B3LYP harmonic and anharmonic force field ab initio calculations. The extension to anharmonic calculations provides the best agreement for the mid-infrared and the near-infrared spectra, but they do not improve the harmonic frequency predictions in the far-infrared domain. This part of the vibrational spectra associated with collective and nonlocalized vibrational modes presents the largest frequency differences between the two lowest energy conformers of DMMP and TMP. These two conformers were taken into account in the vibrational assignment of the spectra. Their experimental evidence was obtained by deconvoluting vibrational bands in the mid-infrared and in the far-infrared regions, respectively. For TEP, the conformational landscape appears very complicated at ambient temperature, and a further analysis at low temperature is required to explain the vibrational features of each conformer.


Asunto(s)
Gases/química , Compuestos Organofosforados/química , Teoría Cuántica , Vibración , Conformación Molecular , Organofosfatos/química , Presión , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Volatilización
13.
J Phys Chem A ; 109(22): 4873-80, 2005 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16833833

RESUMEN

The dynamics in the ground electronic state of the two intramolecular D-Cl stretching modes of (DCl)2 in nitrogen solid has been probed by degenerate four wave mixing experiments. Accumulated photon echoes on the "free" nu1 and "bonded" nu2 modes have been performed by means of the free electron laser of Orsay (CLIO). The analysis of the time-resolved signals provides information on the various processes responsible for the loss of vibrational coherence, in particular intra- and intermolecular vibrational energy transfer and pure dephasing. The influence of the weak hydrogen bond is clearly observed on the coherence times of the two stretching modes. Whatever the temperature, the homogeneous width of nu2 lines is almost twice that of nu1 lines. Contrary to the case of isolated DCl trapped in solid nitrogen, no obvious effect of the nitrogen lattice can be extracted from the temperature dependence of the coherence times.

14.
J Phys Chem A ; 109(25): 5708-16, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16833903

RESUMEN

The rotational spectrum of chlorofluoroiodomethane (CHClFI) has been investigated. Because its rotational spectrum is extremely crowded, extensive ab initio calculations were first performed in order to predict the molecular parameters. The low J transitions were measured using a pulsed-molecular-beam Fourier transform spectrometer, and the millimeter-wave spectrum was measured to determine accurate centrifugal distortion constants. Because of the high resolution of the experimental techniques, the analysis yielded accurate rotational constants, centrifugal distortion corrections, and the complete quadrupole coupling tensors for the iodine and chlorine nuclei, as well as the contribution of iodine to the spin-rotation interaction. These molecular parameters were determined for the two isotopologs CH35ClFI and CH37ClFI. They reproduce the observed transitions within the experimental accuracy. Moreover, the ab initio calculations have provided a precise equilibrium molecular structure. Furthermore, the ab initio molecular parameters are found in good agreement with the corresponding experimental values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...