Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cells Int ; 2021: 6648437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727933

RESUMEN

Knee osteoarthritis is a major cause of disability worldwide. Newer modalities of treatment with less morbidity, such as intra-articular injection of microfragmented fat (MFAT), are showing promise. We report on our novel observation that women show a greater improvement in pain and function to MFAT than men. Traditionally, women have been underrepresented in studies and studies with both sexes regularly fail to analyze the results by sex. To mitigate for this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. There is a need for further studies to identify the molecular basis for this difference and be able to utilize it to improve outcome for both women and men.

2.
Stem Cells Int ; 2020: 8881405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831853

RESUMEN

INTRODUCTION: Microfragmented adipose tissue (MFAT) has been shown to benefit osteoarthritic patients by reducing pain and supporting tissue regeneration through a mesenchymal stem cell (MSC)-related paracrine mechanism. This observational study of 110 knees assessed patient-centered outcomes of pain, functionality, and quality of life, analyzing their variation at twelve months following one ultrasound-guided intra-articular injection of autologous MFAT for the treatment of knee osteoarthritis (KOA). METHOD: Inclusion criteria were as follows: VAS >50, and the presence of KOA as diagnosed on X-ray and MRI. Exclusion criteria included the following: recent injury (<3 months) of the symptomatic knee, intra-articular steroid injections performed within the last three months, and hyaluronic acid injections prior to this treatment. Changes in VAS, OKS, and EQ-5D were scored at baseline and twelve months following a single intra-articular injection of autologous MFAT. Score variation was analyzed utilizing a nonparametric paired samples Wilcoxon test. The statistical analysis is reproducible with Open Access statistical software R (version 4.0.0 or higher). The study was carried out with full patient consent, in a private practice setting. RESULTS: Median VAS (pain) improved from 70 (IQR 20) to 30 (IQR 58) (p < 0.001); median OKS (function) improved from 25 (IQR 11) to 33.5 (IQR 16) (p < 0.001); and median EQ-5D (quality of life) improved from 0.62 (IQR 0.41) to 0.69 (IQR 0.28) (p < 0.001). No adverse events were reported during the intraoperative, recovery, or postoperative periods. CONCLUSIONS: For patients with all grades of knee osteoarthritis who were treated with intra-articular injections of MFAT, statistically significant improvements in pain, function, and quality of life were reported. Although further research is warranted, the results are encouraging and suggest a positive role for intra-articular injection of MFAT as a treatment for knee osteoarthritis.

3.
J Cell Biochem ; 113(6): 2098-111, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22298343

RESUMEN

The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several ∼30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature.


Asunto(s)
Células Endoteliales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , ARN Pequeño no Traducido/genética , Vasos Retinianos/metabolismo , Animales , Bovinos , Células Cultivadas , Perfilación de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/biosíntesis , Neovascularización Fisiológica , Mapeo Nucleótido , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA