Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neotrop Entomol ; 48(1): 38-49, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29651693

RESUMEN

The diet of shredder chironomid larvae depends on the local and temporal conditions of the food resources. We analysed the gut content of shredder chironomid larvae that colonised the leaf litter of three riparian species: Hedychium coronarium, Pteridium arachnoideum and Magnolia ovata. We hypothesised that the differences in the decomposition rates of leaf litter species influence the consumption of plant tissue by shredder chironomid taxa over time. We incubated perforated bottles with each leaf species within four low-order streams during 1st, 3rd, 7th, 22nd, 36th, 55th and 85th day of exposure. We used an analysis of covariance (ANCOVA) to compare differences in the percentage of AFDM (ash-free dry mass) and AOM (amorphous organic matter) among leaf litter species. To verify differences in the larvae abundance, we used a general linear model, and to test if there were feeding preferences for AFDM and AOM, we used the adapted Paloheimo selectivity index. Magnolia ovata presented a higher quantity of AOM followed by H. coronarium and P. arachnoideum. Pteridium arachnoideum showed a higher AFDM followed by H. coronarium and M. ovata. The larvae abundance was different among plant species and varied significantly with AFDM and AOM quantities. The consumption of plant tissue by shredder chironomid differed temporarily and among riparian species, where facultative or strict shredders showed strong association with different leaf litter species. The amount of AFDM and AOM in plant tissues explained these differences. We highlighted that shredder chironomids displayed an important role as co-participants in the decomposition process.


Asunto(s)
Chironomidae/fisiología , Conducta Alimentaria , Cadena Alimentaria , Hojas de la Planta , Animales , Brasil , Larva/fisiología , Magnolia , Pteridium , Ríos , Zingiberaceae
2.
Chemosphere ; 186: 488-494, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28806677

RESUMEN

On November 5th, 2015 the worst environmental disaster in Brazil spilled 60 million m3 of iron mining residue into Gualaxo do Norte River (Minas Gerais State), an affluent of the highest River Basin of the Brazilian Southeast (Doce River Basin), reaching the Atlantic Ocean. To assess the impact of the iron residue on the aquatic plant metabolism, we performed macrophyte growth experiments under controlled light and temperature conditions using two species (Egeria densa and Chara sp.). The plants' growth data were fitted in a kinetic model to obtain the biomass yields (K) and growth rates (µ). Turbidity and electrical conductivity of the water were measured over time. Both plants showed the highest growth rates in the contaminated condition (0.056 d-1 for E. densa and 0.45 d-1 for Chara sp.) and the biomass increased in the short-term (≈20 days). The control condition (i.e. no impacted water) supported the biomass increasing over time and the development of vegetative buddings with high daily rates (1.75 cm d-1 for E. densa and 0.13 cm d-1 for Chara sp). Turbidity showed a sharp decrease in 48 h and had no effects in the plants growth in the contaminated condition. The contamination affected the plants' yields in the long-term affecting the biomass development. This study provides preliminary information about the ecological consequences of a mining dam rupture aiming to collaborate with monitoring and risk assessments.


Asunto(s)
Chara/crecimiento & desarrollo , Hydrocharitaceae/crecimiento & desarrollo , Hierro , Minería , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Océano Atlántico , Biomasa , Brasil , Chara/efectos de los fármacos , Hydrocharitaceae/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Contaminantes Químicos del Agua/análisis
3.
Braz. j. biol ; 76(3): 673-685, tab, graf
Artículo en Inglés | LILACS | ID: lil-785052

RESUMEN

Abstract Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL), the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure) rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species), Pontederiaceae (3 species) and Onarograceae (3 genera) were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%), followed by submersed rooted (24.5%), free floating (19.5%), floating rooted (9.7%) and free submersed (0.3%). Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence) among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among limnological variables and macrophytes distribution, in the case of Ourinhos Reservoir, the results pointed out that the water turbulence, low DL and wind exposure are the main driving forces that determine its aquatic plant distribution, life forms and species composition.


Resumo As macrófitas podem constituir um recurso importante para vários processos físicos, químicos e biológicos dos ecossistemas aquáticos. Esse estudo considera que nos reservatórios tropicais com baixo tempo de retenção e com baixos valores do grau de desenvolvimento das margens (DL), a expansão e manutenção das macrófitas aquáticas são referidas principalmente às condições locais (e.g., hidrodinâmica e exposição ao vento), ao invés do estado trófico e da profundidade de zona eufótica. Nesse contexto, o presente estudo teve como objetivo descrever e comparar a incidência de macrófitas aquáticas em um reservatório tropical de fluxo rápido e não dendrítico. De fevereiro de 2006 a novembro de 2007, oito avaliações limnológicas foram realizadas trimestralmente no reservatório Ourinhos e nas regiões de desembocadura de seus afluentes. Nas seis estações de amostragem 30 variáveis foram determinadas. O número de locais com plantas variou entre 21 e 38 e no final do primeiro ano o número total de espécies foi encontrado. Foram relacionadas 18 espécies de macrófitas aquáticas; Cyperaceae (2 gêneros e espécies), Pontederiaceae (3 espécies) e Onarograceae (3 gêneros) foram as famílias com mais diversidade. Sete espécies (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) sempre estiveram presentes e foram as mais frequentes. As ocorrências de espécies emergentes predominaram (45,9%), seguidas das submersas enraizadas (24,5%), flutuantes livres (19,5%), flutuantes enraizadas (9,7%) e submersas livres (0,3%). Embora as variáveis limnológicas e as distribuições de macrófitas tenham discriminado os mesmo pontos de coleta, regressões lineares múltiplas stepwise não apontaram correspondências fortes (ou coerentes) entre as espécies de macrófitas mais constantes e distribuídas e as variáveis limnológicas, assim como os estados tróficos. No reservatório Ourinhos, a baixa relação entre as variáveis limnológicas e a distribuição das macrófitas aponta que a turbulência da água, o baixo valor de DL e a exposição ao vento sejam as principais forças que determinam a distribuição das plantas aquáticas, as suas formas de vida e a composição das espécies.


Asunto(s)
Recursos Hídricos , Ecosistema , Magnoliopsida/clasificación , Eichhornia/crecimiento & desarrollo
4.
Braz J Biol ; 76(3): 673-85, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27143068

RESUMEN

Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL), the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure) rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species), Pontederiaceae (3 species) and Onarograceae (3 genera) were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%), followed by submersed rooted (24.5%), free floating (19.5%), floating rooted (9.7%) and free submersed (0.3%). Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence) among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among limnological variables and macrophytes distribution, in the case of Ourinhos Reservoir, the results pointed out that the water turbulence, low DL and wind exposure are the main driving forces that determine its aquatic plant distribution, life forms and species composition.


Asunto(s)
Ecosistema , Eichhornia/crecimiento & desarrollo , Magnoliopsida/clasificación , Recursos Hídricos
6.
Braz J Biol ; 74(1): 100-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25055091

RESUMEN

This study aimed at describing kinetic aspects of aerobic and anaerobic mineralization of Eicchornia azurea. The samples of aquatic macrophyte and water were collected in the Monjolinho Reservoir (22° 00' S and 47° 54' W). To determine the leachate potential, dried plant fragments were added to reservoir water, with sampling lasting for 4 months, where the particulate and dissolved organic carbon concentrations were measured. The kinetics of mass loss was obtained with 10 mineralization chambers for both aerobic and anaerobic conditions, with the plant fragments and reservoir water. Two additional chambers were used to monitor the volume of gases produced from anaerobic mineralization, with bioassays to determine oxygen uptake. The results were fitted to a first-order kinetic model, from which 27.21% of detritus corresponded to labile/soluble fractions and 72.62% to the refractory fractions. The decay rates for the global mass losses of the labile/soluble components were 2.07 day-1. DOC mineralization was not verified for either condition. Under aerobic condition, the mass loss constant rate (0.0029 day-1) for the refractory fractions was 2.4 the value for the anaerobic one. Under anaerobic condition, the gases formation occurred in three phases. Based on these results, in the Monjolinho Reservoir, the decomposition of E. azurea that undergo within the water column and in upper layers of sediment is a faster process, favoring the mineralization. In contrast, in the lower layers of sediment the diagenetic processes (i.e. humus production and accumulation of organic matter) are favored.


Asunto(s)
Biodegradación Ambiental , Eichhornia/metabolismo , Aerobiosis , Anaerobiosis , Brasil , Carbono/metabolismo , Agua Dulce , Consumo de Oxígeno , Factores de Tiempo
7.
Braz J Biol ; 73(2): 299-307, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23917557

RESUMEN

Some aquatic plants have fast metabolism and growth, even at sub-optimal conditions, and become dominant in lentic environments such as large reservoirs, altering the nutrient cycle and impairing their environmental quality. There is great need in the knowledge impact processes of invasive species in aquatic environments, among the major, those related to the decomposition. This study evaluated the anaerobic decomposition of invasive submerged macrophytes Egeria densa Planch, native, and Hydrilla verticillata (L.f.) Royle, exotic in Porto Primavera and Jupiá reservoirs, Paraná basin. We evaluated the decay of organic matter, humification degree of the leached material, electrical conductivity and pH of the decomposition process. Mathematical models were utilised to describe the decomposition patterns over time. Both species showed the same heterogeneous pattern of decay of organic matter and carbon mineralisation. The models of carbon mineralisation, compared with the experimentally obtained data presented were adequate. Both species show no significant differences in the decomposition processes. Incubations of both species presented rapid t ½ for POC mineralisation and low DOC mineralisation.


Asunto(s)
Biodegradación Ambiental , Agua Dulce , Plantas/metabolismo , Anaerobiosis , Clima Tropical
8.
Braz. j. microbiol ; 42(3): 909-918, July-Sept. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-607519

RESUMEN

Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91) and xylanase (EC 3.2.1.8) during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus) on the surface and water-sediment interface (w-s interface) of an oxbow lagoon (Óleo lagoon) within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.


Asunto(s)
Agua Dulce/análisis , Ambiente Acuático/análisis , Carbono , Pruebas Enzimáticas Clínicas , Celulasa/análisis , Activación Enzimática , Macrófitas , Laguna Costera , Métodos , Métodos , Muestras de Agua
9.
Braz J Biol ; 71(1): 27-35, 2011 02.
Artículo en Inglés | MEDLINE | ID: mdl-21437396

RESUMEN

The kinetics of oxygen consumption related to mineralisation of 18 taxa of aquatic macrophytes (Cyperus sp, Azolla caroliniana, Echinodorus macrophyllus, Eichhornia azurea, Eichhornia crassipes, Eleocharis sp1, Eleocharis sp2, Hetereanthera multiflora, Hydrocotyle raniculoides, Ludwigia sp, Myriophyllum aquaticum, Nymphaea elegans, Oxycaryum cubense, Ricciocarpus natans, Rynchospora corymbosa, Salvinia auriculata, Typha domingensis and Utricularia foliosa) from the reservoir of Piraju Hydroelectric Power Plant (São Paulo state, Brazil) were described. For each species, two incubations were prepared with ca. 300.0 mg of plant (DW) and 1.0 L of reservoir water sample. The incubations were maintained in the dark and at 20 ºC. Periodically the dissolved oxygen (DO) concentrations were measured; the accumulated DO values were fitted to 1st order kinetic model and the results showed that: i) high oxygen consumption was observed for Ludwigia sp (533 mg g-1 DW), while the lowest was registered for Eleocharis sp1 (205 mg g-1 DW) mineralisation; ii) the higher deoxygenation rate constants were verified in the mineralisation of A. caroliniana (0.052 day-1), H. raniculoides (0.050 day-1) and U. foliosa (0.049 day-1). The oxygen consumption rate constants of Ludwigia sp and Eleocharis sp2 mineralisation (0.027 day-1) were the lowest. The half-time of oxygen consumption varied from 9 to 26 days. In the short term, the detritus of E. macrophyllus, H. raniculoides, Ludwigia sp, N. elegans and U. foliosa were the critical resources to the reservoir oxygen demand; while in the long term, A. caroliniana, H. multiflora and T. domingensis were the resources that can potentially contribute to the benthic oxygen demand of this reservoir.


Asunto(s)
Biodegradación Ambiental , Agua Dulce , Magnoliopsida/metabolismo , Consumo de Oxígeno/fisiología , Magnoliopsida/clasificación , Magnoliopsida/fisiología , Factores de Tiempo
10.
Braz J Microbiol ; 42(3): 909-18, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24031706

RESUMEN

Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91) and xylanase (EC 3.2.1.8) during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus) on the surface and water-sediment interface (w-s interface) of an oxbow lagoon (Óleo lagoon) within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA