Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120157, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23610167

RESUMEN

Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4-13.2 stems m(-2)), but after 6 years, increased mortality and decreased regeneration--primarily of seedlings--led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred--almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes.


Asunto(s)
Incendios , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Biota , Brasil , Sequías , Germinación , Tallos de la Planta/crecimiento & desarrollo , Estaciones del Año , Semillas/crecimiento & desarrollo
2.
Oecologia ; 150(2): 181-9, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16955290

RESUMEN

Severe droughts may alter the reproductive phenology of tropical tree species, but our understanding of these effects has been hampered by confounded variation in drought, light and other factors during natural drought events. We used a large-scale experimental reduction of throughfall in an eastern-central Amazon forest to study the phenological response to drought of an abundant subcanopy tree, Coussarea racemosa. We hypothesized that drought would alter the production and the timing of reproduction, as well as the number of viable fruits. The study system comprised two 1-ha plots in the Tapajos National Forest, Para, Brazil: a dry plot where 50% of incoming precipitation (80% throughfall) was diverted from the soil during the six-month wet season beginning in January 2000, and a wet plot that received natural rainfall inputs. Fruit production of C. racemosa was quantified every 15 days using 100 litter traps (0.5 m(2)) in each plot. The production of new leaves and flowers was recorded monthly for C. racemosa individuals. Soil water, pre-dawn leaf water potential and solar radiation were measured to help interpret phenological patterns. Over the approximately 3.5-year period (April 2000 through December 2003), total fruit production remained similar between plots, declining by 12%. In 2003, production was four times higher in both plots than in previous years. In the dry plot, fruit fall shifted 40 and 60 days later into the dry season in 2002 and 2003, respectively. Total fruit fall dry mass production was variable across the study period. Foliage and flower production coincided with peak irradiance early in the dry season until delays in flowering appeared in the dry plot in 2002 and 2003. Plant water stress, through its influence on leaf developmental processes and, perhaps, inhibition of photosynthesis, appears to have altered both the timing of fruit fall and the quality and number of seeds produced.


Asunto(s)
Desastres , Rubiaceae/fisiología , Brasil , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Lluvia , Reproducción , Semillas/crecimiento & desarrollo , Árboles , Agua/análisis
4.
Nature ; 440(7083): 520-3, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16554817

RESUMEN

Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.


Asunto(s)
Conservación de los Recursos Naturales , Modelos Biológicos , Agricultura , Animales , Biodiversidad , Brasil , Bovinos , Ecosistema , Humanos , Ríos , Factores Socioeconómicos , Glycine max , Árboles
5.
Estud. av ; Estud. av;19(54): 137-152, ago. 2005.
Artículo en Portugués | LILACS | ID: lil-430404

RESUMEN

A AMAZÕNIA está entrando em uma era de rápidas mudanças impulsionadas pela previsão de asfaltamento de rodovias que estimularão a expansão da fronteira agrícola e de exploração madeireira. O declínio do custo de transporte tem importantes implicações para a biodiversidade, emissão de gases que contribuem para o efeito estufa e prosperidade da sociedade da Amazônia a longo prazo. Para analisar esse contexto, foi desenvolvido um modelo de simulação de desmatamento na bacia Amazônica, sensível a diferentes cenários de políticas públicas frente à expansão da infra-estrutura de transporte pela região. Resultados do modelo indicam que, dentro de um cenário pessimista, o desmatamento projetado pode eliminar, até meados deste século, 40 por cento dos atuais 5,4 milhões de km² de florestas da Amazônia, liberando o equivalente a 32 Pg (10(9) toneladas) de carbono para atmosfera. A modelagem de cenários alternativos aponta que a expansão de uma rede de áreas protegidas, efetivamente implementadas, poderia reduzir em até 1/3 as perdas florestais projetadas. Contudo, outras medidas de conservação são ainda necessárias para se manter a integridade funcional das paisagens e bacias hidrográficas amazônicas. Atuais experimentos em conservação florestal em propriedades privadas, mercados de serviços ambientais e zoneamento agro-ecológico devem ser refinados e multiplicados a fim de se buscar uma conservação extensiva.


Asunto(s)
Ecosistema Amazónico , Conservación de los Recursos Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA