Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 158: 308-323, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563775

RESUMEN

During extrusion printing of pasty biomaterials, internal geometries are mainly adjusted by positioning of straightly deposited strands which does not allow realization of spatially adaptable density gradients in x-, y- and z-direction for anisotropic scaffolds or anatomically shaped constructs. Herein, an alternative concept for printing patterns based on sinusoidal curves was evaluated using a clinically approved calcium phosphate cement (CPC). Infill density in scaffolds was adjusted by varying wavelength and amplitude of a sinus curve. Both wavelength and amplitude factors were defined by multitudes of the applied nozzle diameter. For CPC as a biomaterial ink in bone application, porosity, mechanical stiffness and biological response by seeded immortalized human mesenchymal stem cells - adhesion and pore bridging behavior - were investigated. The internal structure of a xyz-gradient scaffold was proven via X-ray based micro computed tomography (µCT). Silicone was used as a model material to investigate the impact of printing velocity and strand distance on the shape fidelity of the sinus pattern for soft matter printing. The impact of different sinus patterns on mechanical properties was assessed. Density and mechanical properties of CPC scaffolds were successfully adjusted without an adverse effect on adhesion and cell number development. In a proof-of-concept experiment, a sinus-adjusted density gradient in an anatomically shaped construct (human vertebral body) defined via clinical computed tomography (CT) data was demonstrated. This fills a technological gap for extrusion-based printing of freely adjustable, continuously guidable infill density gradients in all spatial directions. STATEMENT OF SIGNIFICANCE: 3D extrusion printing of biomaterials allows the generation of anatomically shaped, patient-specific implants or tissue engineering scaffolds. The density of such a structure is typically adjusted by the strand-to-strand distance of parallel, straight-meandered strands in each deposited layer. By printing in a sinusoidal pattern, design of density gradients is possible with a free, spatial resolution in x-, y- and z-direction. We demonstrated that porosity and mechanical properties can be freely adapted in this way without an adverse effect on cell adhesion. With the example of a CT dataset of a human spine, the anisotropic pattern of a vertebral body was resembled by this printing technique that can be translated to various patterns, materials and application.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X , Andamios del Tejido/química , Materiales Biocompatibles/química , Porosidad , Impresión Tridimensional
2.
J Mech Behav Biomed Mater ; 131: 105253, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490511

RESUMEN

Mechanical stimulation of bioprinted constructs can enhance the differentiation of cells within these scaffolds, such as driving chondrocytes towards cartilage tissue substitutes. In this study, a holistic approach is presented for designing and engineering a material-specific device based on a magnetic field setup using the Maxwell configuration for a touchless cyclic magnetic stimulation of (bioprinted) hydrogel scaffolds containing magnetic microparticles. We describe the entire development process, from the design of the magnetic field to the construction of the bioreactor and provide an evaluation of the calculation. Finally, an analysis of the distribution and orientation of the particles within the hydrogels and a cytocompatibility test after applying the intended stimulation regime were conducted. As a proof-of-principle, a model system in the shape of a cylindrical bending beam consisting of the established magnetisable bioink based on alginate, methylcellulose and magnetite microparticles (algMC + mag), was used instead of 3D printed, macroporous scaffolds of this material. Requirements for the dimensioning of the force, such as the Young's modulus, were determined experimentally. The magnetic field was calculated using the software Finite Element Method Magnetics (FEMM). The cyclic stimulation of the samples was performed over 14 days with a duration of 3 h per day. The aim was to achieve an elongation of up to 10%. The homogeneous particle distribution in stimulated and non-stimulated samples was proven via µCT and digital image processing (DIP). Even after applying a static magnetic field over 30 min, no structure formation such as chains or agglomeration of the magnetic particles were observed. The deformation behaviour defined as a shifted position of the neutral fibre (centre line of an object) during stimulation was measured via µCT and analysed using DIP. From these data, an elongation of approx. 9% was calculated for day 14. This elongation was achieved for both the stimulated samples and the control group without stimulation, which corresponds to the theoretically calculated value. The cytocompatibility of the bioink, scaffold environment and stimulation approach was demonstrated for bioprinted scaffolds with embedded human mesenchymal stem cells and chondrocytes. These findings proved the suitability and versatility of the bioreactor and the presented approach for stimulation experiments.


Asunto(s)
Hidrogeles , Andamios del Tejido , Reactores Biológicos , Humanos , Fenómenos Magnéticos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
3.
ACS Biomater Sci Eng ; 7(2): 648-662, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507748

RESUMEN

Mechanical stimulation of cells embedded in scaffolds is known to increase the cellular performance toward osteogenic or chondrogenic differentiation and tissue development. Three-dimensional bioplotting of magnetically deformable scaffolds enables the spatially defined distribution of magnetically inducible scaffold regions. In this study, a magnetic bioink based on alginate (alg, 3%) and methylcellulose (MC, 9%) with incorporated magnetite microparticles (25% w/w) was developed and characterized. The size and shape of particles were monitored via scanning electron microscopy and X-ray micro-computed tomography. Shear-thinning properties of the algMC ink were maintained after the addition of different concentrations of magnetite microparticles to the ink. Its viscosity proportionally increased with the added amount of magnetite, and so did the level of saturation magnetization as determined via vibrating sample magnetometry. The printability and shape fidelity of various shapes were evaluated, so that the final composition of algMC + 25% w/w magnetite was chosen. With application of this ink, cytocompatibility was proven in indirect cell culture and bioplotting experiments using a human mesenchymal stem cell line. Toward the deformation of cell-laden scaffolds to support cell differentiation in the future, radiography allowed the real-time monitoring of magnetically induced deformation of scaffolds of different pore architectures and scaffold orientations inside the magnetic field. Varying the strand distance and scaffold design will allow fine-tuning the degree of deformation in stimulatory experiments.


Asunto(s)
Bioimpresión , Alginatos , Humanos , Impresión Tridimensional , Andamios del Tejido , Microtomografía por Rayos X
4.
Gels ; 4(3)2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30674844

RESUMEN

3D plotting is an additive manufacturing technology enabling biofabrication, thus the integration of cells or biologically sensitive proteins or growth factors into the manufacturing process. However, most (bio-)inks developed for 3D plotting were not shown to be processed into clinically relevant geometries comprising critical overhangs and cavities, which would collapse without a sufficient support material. Herein, we have developed a support hydrogel ink based on methylcellulose (mc), which is able to act as support as long as the co-plotted main structure is not stable. Therefore, 6 w/v %, 8 w/v % and 10 w/v % mc were allowed to swell in water, resulting in viscous inks, which were characterized for their rheological and extrusion properties. The successful usage of 10 w/v % mc as support ink was proven by multichannel plotting of the support together with a plottable calcium phosphate cement (CPC) acting as main structure. CPC scaffolds displaying critical overhangs or a large central cavity could be plotted accurately with the newly developed mc support ink. The dissolution properties of mc allowed complete removal of the gel without residuals, once CPC setting was finished. Finally, we fabricated a scaphoid bone model by computed tomography data acquisition and co-extrusion of CPC and the mc support hydrogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...