Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
N Biotechnol ; 69: 18-27, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217201

RESUMEN

Fructo-oligosaccharides (FOS) are one of the most well-studied and commercialized prebiotics. FOS can be obtained either by controlled hydrolysis of inulin or by sucrose transfructosylation. FOS produced from sucrose are typically classified as short-chain FOS (scFOS), of which the best known are 1-kestotriose (GF2), 1,1-kestotetraose (GF3), and 1,1,1-kestopentaose (GF4), produced by fructosyltransferases (FTases) or ß-fructofuranosidases. In previous work, FOS production was studied using the Aspergillus oryzae N74 strain, its ftase gene was heterologously expressed in Komagataella phaffii (Pichia pastoris), and the enzyme's tertiary structure modeled. More recently, residues that may be involved in protein-substrate interactions were predicted. In this study, the aim was to experimentally validate previous in silico results by independently producing recombinant wild-type A. oryzae N74 FTase and three single-point mutations in Komagataella phaffii (Pichia pastoris). The R163A mutation virtually abolished the transfructosylating activity, indicating a requirement for the positively charged arginine residue in the catalytic domain D. In contrast, transfructosylating activity was improved by introducing the mutations V242E or F254H, with V242E resulting in higher production of GF2 without affecting that of GF3. Interestingly, initial sucrose concentration, reaction temperature and the presence of metal cofactors did not affect the enhanced activity of mutant V242E. Overall, these results shed light on the mechanism of transfructosylation of the FTase from A. oryzae and expand considerations regarding the design of biotechnological processes for specific FOS production.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Hexosiltransferasas , Oligosacáridos , Pichia/genética , Saccharomycetales , Sacarosa
2.
Univ. sci ; 21(3): 195-217, Sep.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-963351

RESUMEN

Abstract β-hexosaminidases (Hex) are dimeric enzymes involved in the lysosomal degradation of glycolipids and glycans. They are formed by α- and/or β-subunits encoded by HEXA and HEXB genes, respectively. Mutations in these genes lead to Tay Sachs or Sandhoff diseases, which are neurodegenerative disorders caused by the accumulation of non-degraded glycolipids. Although tissue-derived Hex have been widely characterized, limited information is available for recombinant α-hexosaminidases. In this study, human lysosomal recombinant Hex (rhHex-A, rhHex-B, and rhHex-S) were produced in the methylotrophic yeast Pichia pastoris GS115. The highest specific enzyme activities were 13,124 for rhHexA; 12,779 for rhHex-B; and 14,606 U .mg-1 for rhHex-S. These results were 25- to 50-fold higher than those obtained from normal human leukocytes. Proteins were purified and characterized at different pH and temperature conditions. All proteins were stable at acidic pH, and at 4 °C and 37 °C. At 45 °C rhHex-S was completely inactivated, while rhHex-A and rhHex-B showed high stability. This study demonstrates P. pastoris GS115 potential for polymeric lysosomal enzyme production, and describes the characterization of recombinant β-hexosaminidases produced within the same host.


Resumen Las β-hexosaminidasas (Hex) son enzimas diméricas involucradas en la degradación lisosomal de glicolípidos y glicanos. Estas enzimas están formadas por las subunidades α- y/o β-codificadas por los genes HEXA and HEXB respectivamente. Las mutaciones de estos genes conducen a las enfermedades de Tay Sachs o Sandhoff, que son desórdenes neurodegenerativos causados por la acumulación de glicolípidos no degradados. Aunque las Hex derivadas de tejido han sido ampliamente caracterizadas, la información disponible sobre las p-hexosaminidasas recombinantes es limitada. En este estudio se produjeron Hex recombinantes lisosomales (rhHex-A, rhHex-B y rhHex-S) en la levadura metilotrófica Pichia pastoris GS115. Las actividades específicas más altas de las enzimas fueron 13.124, 12.779, 14.606 U .mg-1 para rhHex-A, rhHex-B y rhHex-S, respectivamente. Estos resultados fueron 25 a 50 veces más altos que los obtenidos de leucocitos humanos normales. Las proteínas se purificaron y se caracterizaron a diferentes condiciones de pH y temperatura. Todas las proteínas fueron estables a pH ácido y a 4°C y 37°C. A 45°C la rhHex-S se inactivó completamente, mientras que rhHex-A y rhHex-B mostraron alta estabilidad. Este estudio demuestra el potencial de P. pastoris GS115 para la producción de enzimas lisosomales poliméricas y presenta la caracterización de distintas β-hexosaminidasas recombinantes producidas en un único hospedero.


Resumen As β-hexosaminidases (Hex) são enzimas diméricas envolvidas na degradação lisossomal de glicolipídeos e glicanos. Essas enzimas são formadas por subunidades a- e/ou p-codificadas pelos genes HEXA e HEXB, respectivamente. As mutações nesses genes causam a doença de Sandhoff ou Tay Sachs, que são desordens neurodegenerativas causadas pela acumulação de glicolipídeos não degradados. Embora Hex derivadas de tecido hajam sido caracterizadas extensivamente, as informações disponíveis sobre as p-hexosaminidases recombinantes são limitadas. Esse estudo produziu Hex recombinantes lisossomais (rhHex-A, rhHex-B e rhHex-S) na levedura metilotrófica Pichia pastoris GS115. As atividades específicas mais altas das enzimas foram 13.124, 12.779, 14.606 U .mg-1 para rhHex-A, rhHex-B y rhHex-S, respectivamente. Esses resultados foram 25 a 50 vezes mais altos do que os obtidos a partir de leucócitos humanos normais. As proteínas foram purificadas e caracterizadas em diferentes condições de pH e temperatura. Todas as proteínas foram estáveis a pH ácido e a 4°C e 37°C. A 45°C a rhHex-S foi completamente inativada, enquanto rhHex rhHex-A e B se mostraram altamente estáveis. Esse estudo demonstra o potencial de P. pastoris GS115 para a produção de enzimas lisossomais poliméricas e apresenta a caracterização de diferentes p-hexosaminidases recombinantes produzidas em único hospedeiro.

3.
Sci Rep ; 6: 29329, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27378276

RESUMEN

Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A.


Asunto(s)
Condroitinsulfatasas/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Células Cultivadas , Condroitinsulfatasas/química , Condroitinsulfatasas/genética , Condroitinsulfatasas/aislamiento & purificación , Endocitosis , Estabilidad de Enzimas , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Pichia/genética , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sulfatasas/genética , Sulfatasas/metabolismo , Temperatura
4.
Mol Genet Metab ; 116(1-2): 13-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26071627

RESUMEN

Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Lisosomas/enzimología , Proteínas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Animales , Escherichia coli/metabolismo , Vectores Genéticos/metabolismo , Humanos , Plantas/genética , Proteínas/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Saccharomycetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA