Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 21(19): 4214-24, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22736028

RESUMEN

Heteroplasmy, the mixture of mitochondrial genomes (mtDNA), varies among individuals and cells. Heteroplasmy levels alter the penetrance of pathological mtDNA mutations, and the susceptibility to age-related diseases such as Parkinson's disease. Although mitochondrial dysfunction occurs in age-related type 2 diabetes mellitus (T2DM), the involvement of heteroplasmy in diabetes is unclear. We hypothesized that the heteroplasmic mutational (HM) pattern may change in T2DM. To test this, we used next-generation sequencing, i.e. massive parallel sequencing (MPS), along with PCR-cloning-Sanger sequencing to analyze HM in blood and skeletal muscle DNA samples from monozygotic (MZ) twins either concordant or discordant for T2DM. Great variability was identified in the repertoires and amounts of HMs among individuals, with a tendency towards more mutations in skeletal muscle than in blood. Whereas many HMs were unique, many were either shared among twin pairs or among tissues of the same individual, regardless of their prevalence. This suggested a heritable influence on even low abundance HMs. We found no clear differences between T2DM and controls. However, we found ~5-fold increase of HMs in non-coding sequences implying the influence of negative selection (P < 0.001). This negative selection was evident both in moderate to highly abundant heteroplasmy (>5% of the molecules per sample) and in low abundance heteroplasmy (<5% of the molecules). Although our study found no evidence supporting the involvement of HMs in the etiology of T2DM, the twin study found clear evidence of a heritable influence on the accumulation of HMs as well as the signatures of selection in heteroplasmic mutations.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Patrón de Herencia , Mutación , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gemelos Monocigóticos/genética , Población Blanca/genética
2.
PLoS One ; 5(4): e9985, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20376309

RESUMEN

After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I), was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14) to man (N = 45), renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA)- and nuclear DNA (nDNA)-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7) share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10). Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.


Asunto(s)
Análisis por Conglomerados , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica , Núcleo Celular/genética , ADN Mitocondrial/genética , Humanos , NADH Deshidrogenasa/genética , Subunidades de Proteína , ARN Mensajero/análisis , Distribución Tisular , Transcripción Genética
3.
BMC Genomics ; 9: 198, 2008 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-18445251

RESUMEN

BACKGROUND: Recent genome-wide association studies searching for candidate susceptibility loci for common complex diseases such as type 2 diabetes mellitus (T2DM) and its common complications have uncovered novel disease-associated genes. Nevertheless these large-scale population screens often overlook the tremendous variation in the mitochondrial genome (mtDNA) and its involvement in complex disorders. RESULTS: We have analyzed the mitochondrial DNA (mtDNA) genetic variability in Ashkenazi (Ash), Sephardic (Seph) and North African (NAF) Jewish populations (total n = 1179). Our analysis showed significant differences (p < 0.001) in the distribution of mtDNA genetic backgrounds (haplogroups) among the studied populations. To test whether these differences alter the pattern of disease susceptibility, we have screened our three Jewish populations for an association of mtDNA genetic haplogroups with T2DM complications. Our results identified population-specific susceptibility factors of which the best example is the Ashkenazi Jewish specific haplogroup N1b1, having an apparent protective effect against T2DM complications in Ash (p = 0.006), being absent in the NAF population and under-represented in the Seph population. We have generated and analyzed whole mtDNA sequences from the disease associated haplogroups revealing mutations in highly conserved positions that are good candidates to explain the phenotypic effect of these genetic backgrounds. CONCLUSION: Our findings support the possibility that recent bottleneck events leading to over-representation of minor mtDNA alleles in specific genetic isolates, could result in population-specific susceptibility loci to complex disorders.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Variación Genética , Genética de Población , Judíos/genética , Diabetes Mellitus Tipo 2/complicaciones , Haplotipos , Humanos , Mutación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...