Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 18(40): 7897-7898, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36205114

RESUMEN

Correction for 'Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation' by Noémie Dagès et al., Soft Matter, 2022, 18, 6645-6659, https://doi.org/10.1039/D2SM00481J.

2.
Soft Matter ; 18(35): 6645-6659, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36004507

RESUMEN

Colloidal gels are out-of-equilibrium soft solids composed of attractive Brownian particles that form a space-spanning network at low volume fractions. The elastic properties of these systems result from the network microstructure, which is very sensitive to shear history. Here, we take advantage of such sensitivity to tune the viscoelastic properties of a colloidal gel made of carbon black nanoparticles. Starting from a fluidized state at an applied shear rate 0, we use an abrupt flow cessation to trigger a liquid-to-solid transition. We observe that the resulting gel is all the more elastic when the shear rate 0 is low and that the viscoelastic spectra can be mapped on a master curve. Moreover, coupling rheometry to small angle X-ray scattering allows us to show that the gel microstructure is different from gels solely formed by thermal agitation where only two length scales are observed: the dimension of the colloidal and the dimension of the fractal aggregates. Competition between shear and thermal energy leads to gels with three characteristic length scales. Such gels structure in a percolated network of fractal clusters that interpenetrate each other. Experiments on gels prepared with various shear histories reveal that cluster interpenetration increases with decreasing values of the shear rate 0 applied before flow cessation. These observations strongly suggest that cluster interpenetration drives the gel elasticity, which we confirm using a structural model. Our results, which are in stark contrast to previous literature, where gel elasticity was either linked to cluster connectivity or to bending modes, highlight a novel local parameter controlling the macroscopic viscoelastic properties of colloidal gels.

3.
Soft Matter ; 16(32): 7503-7512, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32725023

RESUMEN

Swimming microorganisms interact and alter the dynamics of Brownian particles and tend to modify their transport properties. In particular, dilute colloids coupled to a bath of swimming cells generically display enhanced diffusion on long time scales. This transport dynamics stems from a subtle interplay between the active and passive particles that still resists our understanding despite decades of intense research. Here, we tackle the root of the problem by providing a quantitative characterisation of the single scattering events between a colloid and a bacterium, a smooth running E. coli. Based on our experiments, we build a minimal model that quantitatively predicts the geometry of the scattering trajectories, and enhanced colloidal diffusion at long times. This quantitative confrontation between theory and experiments elucidates the microscopic origin of enhanced transport. Collisions are solely ruled by stochastic contact interactions and the ratio of the drag coefficients of the colloid and the bacteria. Such description accounts both for genuine anomalous diffusion at short times and enhanced diffusion at long times with no ballistic regime at any scale.


Asunto(s)
Coloides , Escherichia coli , Difusión , Suspensiones , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...