Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(4): 102692, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37917578

RESUMEN

Transcription factors (TFs) play a pivotal role in gene expression, and their DNA binding is the prerequisite to instigating gene transcription. Here, we present a protocol that exploits the proximity ligation assay technique to measure the DNA-binding activities of TFs in situ at the single-cell resolution. We describe steps for immunostaining with specific antibodies against double-stranded DNA and the TFs of interest, probe incubation, proximity ligation, and signal amplification. We then detail procedures for imaging and image analysis. For complete details on the use and execution of this protocol, please refer to Dai et al. (2015)1 and Xu et al. (2023).2.


Asunto(s)
Anticuerpos , Factores de Transcripción , Factores de Transcripción/genética , Procesamiento de Imagen Asistido por Computador , Células Cultivadas
2.
Cell Rep ; 42(6): 112557, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224019

RESUMEN

Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.


Asunto(s)
Proteínas de Unión al ADN , Respuesta al Choque Térmico , Factores de Transcripción , ADN , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Humanos , Línea Celular Tumoral
3.
Hepatol Commun ; 6(10): 2781-2797, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945902

RESUMEN

Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.


Asunto(s)
Actinas , Factores de Transcripción del Choque Térmico/metabolismo , Células Estrelladas Hepáticas , Actinas/genética , Animales , Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
4.
Bioact Mater ; 18: 138-150, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35387155

RESUMEN

Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs.

6.
Sci Adv ; 6(46)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177089

RESUMEN

The role of proteomic instability in cancer, particularly amyloidogenesis, remains obscure. Heat shock factor 1 (HSF1) transcriptionally governs the proteotoxic stress response to suppress proteomic instability and enhance survival. Paradoxically, HSF1 promotes oncogenesis. Here, we report that AKT activates HSF1 via Ser230 phosphorylation. In vivo, HSF1 enables megalencephaly and hepatomegaly, which are driven by hyperactive phosphatidylinositol 3-kinase/AKT signaling. Hsf1 deficiency exacerbates amyloidogenesis and elicits apoptosis, thereby countering tissue overgrowth. Unexpectedly, HSF1 physically neutralizes soluble amyloid oligomers (AOs). Beyond impeding amyloidogenesis, HSF1 shields HSP60 from direct assault by AOs, averting HSP60 destabilization, collapse of the mitochondrial proteome, and, ultimately, mitophagy and apoptosis. The very same mechanism occurs in Alzheimer's disease. These findings suggest that amyloidogenesis may be a checkpoint mechanism that constrains uncontrolled growth and safeguards tissue homeostasis, congruent with its emerging tumor-suppressive function. HSF1, by acting as an anti-amyloid factor, promotes overgrowth syndromes and cancer but may suppress neurodegenerative disorders.

7.
Mol Cell ; 76(4): 546-561.e8, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31561952

RESUMEN

Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adiposidad , Animales , Sitios de Unión , Proliferación Celular , Colesterol/biosíntesis , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico/deficiencia , Factores de Transcripción del Choque Térmico/genética , Humanos , Lipogénesis , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fosforilación , Conformación Proteica , Estabilidad Proteica , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Relación Estructura-Actividad
8.
Philos Trans R Soc Lond B Biol Sci ; 373(1738)2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203710

RESUMEN

The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.


Asunto(s)
Carcinogénesis/genética , Factores de Transcripción del Choque Térmico/genética , Mamíferos/genética , Células Neoplásicas Circulantes/metabolismo , Animales , Carcinogénesis/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Mamíferos/metabolismo
9.
Bioessays ; 39(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28295473

RESUMEN

Beyond protein synthesis and autophagy, emerging evidence has implicated mTORC1 in regulating protein folding and proteasomal degradation as well, highlighting its prominent role in cellular proteome homeostasis or proteostasis. In addition to growth signals, mTORC1 senses and responds to a wide array of stresses, including energetic/metabolic stress, genotoxic stress, oxidative stress, osmotic stress, ER stress, proteotoxic stress, and psychological stress. Whereas growth signals unanimously stimulate mTORC1, stresses exert complex impacts on mTORC1, most of which are repressive. mTORC1 suppression, as a generic adaptive strategy, empowers cell survival under various stressful conditions. In this essay, we provide an overview of the emerging role of mTORC1 in proteostasis, the distinct molecular mechanisms through which mTORC1 reacts to diverse stresses, and the schemes exploited by cancer cells to circumvent stress-induced mTORC1 suppression. Hence, acting as a stress sensor, mTORC1 intimately couples stresses to cellular proteostasis.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteostasis , Estrés Fisiológico , Animales , Carcinogénesis , Estrés del Retículo Endoplásmico , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Presión Osmótica , Estrés Oxidativo , Estrés Psicológico
10.
Methods Mol Biol ; 1487: 195-201, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924568

RESUMEN

RAS/MAPK signaling responds to diverse extracellular cues and regulates a wide array of cellular processes. Given its biological importance, abnormalities in RAS/MAPK signaling cascade have been intimately implicated in numerous human diseases, including cancer. Herein, we describe a novel methodology to study activation of this pivotal signaling pathway. The Proximity Ligation Assay (PLA) is employed to monitor kinase-substrate interactions between MEK1 and HSF1, or MEK1 and ERK1 in situ.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo , Células HeLa , Humanos
11.
Cell Cycle ; 15(23): 3155-3156, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27589382
12.
Cell Mol Life Sci ; 73(22): 4231-4248, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27289378

RESUMEN

Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.


Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas/toxicidad , Estrés Fisiológico/efectos de los fármacos , Animales , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos
13.
Nat Cell Biol ; 18(5): 527-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27043084

RESUMEN

To cope with proteotoxic stress, cells attenuate protein synthesis. However, the precise mechanisms underlying this fundamental adaptation remain poorly defined. Here we report that mTORC1 acts as an immediate cellular sensor of proteotoxic stress. Surprisingly, the multifaceted stress-responsive kinase JNK constitutively associates with mTORC1 under normal growth conditions. On activation by proteotoxic stress, JNK phosphorylates both RAPTOR at S863 and mTOR at S567, causing partial disintegration of mTORC1 and subsequent translation inhibition. Importantly, HSF1, the central player in the proteotoxic stress response (PSR), preserves mTORC1 integrity and function by inactivating JNK, independently of its canonical transcriptional action. Thereby, HSF1 translationally augments the PSR. Beyond promoting stress resistance, this intricate HSF1-JNK-mTORC1 interplay, strikingly, regulates cell, organ and body sizes. Thus, these results illuminate a unifying mechanism that controls stress adaptation and growth.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Complejos Multiproteicos/metabolismo , Proteínas/toxicidad , Estrés Fisiológico/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Tamaño Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
14.
Trends Cell Biol ; 26(1): 17-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26597576

RESUMEN

Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Homeostasis , Neoplasias/metabolismo , Proteoma/metabolismo , Factores de Transcripción/fisiología , Animales , Factores de Transcripción del Choque Térmico , Humanos , Procesamiento Proteico-Postraduccional , Transducción de Señal
15.
Cell ; 160(4): 729-744, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679764

RESUMEN

Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Here, we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state, and disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al ADN/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias/metabolismo , Estabilidad Proteica , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Femenino , Factores de Transcripción del Choque Térmico , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fosforilación , Agregado de Proteínas , Proteoma/metabolismo , Trasplante Heterólogo
16.
EMBO J ; 34(3): 275-93, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25425574

RESUMEN

Numerous extrinsic and intrinsic insults trigger the HSF1-mediated proteotoxic stress response (PSR), an ancient transcriptional program that is essential to proteostasis and survival under such conditions. In contrast to its well-recognized mobilization by proteotoxic stress, little is known about how this powerful adaptive mechanism reacts to other stresses. Surprisingly, we discovered that metabolic stress suppresses the PSR. This suppression is largely mediated through the central metabolic sensor AMPK, which physically interacts with and phosphorylates HSF1 at Ser121. Through AMPK activation, metabolic stress represses HSF1, rendering cells vulnerable to proteotoxic stress. Conversely, proteotoxic stress inactivates AMPK and thereby interferes with the metabolic stress response. Importantly, metformin, a metabolic stressor and popular anti-diabetic drug, inactivates HSF1 and provokes proteotoxic stress within tumor cells, thereby impeding tumor growth. Thus, these findings uncover a novel interplay between the metabolic stress sensor AMPK and the proteotoxic stress sensor HSF1 that profoundly impacts stress resistance, proteostasis, and malignant growth.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Factores de Transcripción del Choque Térmico , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Factores de Transcripción/genética
17.
Mol Cell Oncol ; 2(4)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26973866

RESUMEN

Within tumor cells the heat shock factor 1 (HSF1)-mediated stress response is constitutively mobilized to counter persistent proteotoxic stress, hence sustaining their fragile proteome homeostasis and supporting robust malignant phenotypes. Intriguingly, our new studies reveal that metabolic stressors, such as metformin, inactivate HSF1 and provoke proteomic chaos, thereby impeding tumorigenesis.

18.
J Clin Invest ; 122(10): 3742-54, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22945628

RESUMEN

Intrinsic stress response pathways are frequently mobilized within tumor cells. The mediators of these adaptive mechanisms and how they contribute to carcinogenesis remain poorly understood. A striking example is heat shock factor 1 (HSF1), master transcriptional regulator of the heat shock response. Surprisingly, we found that loss of the tumor suppressor gene neurofibromatosis type 1 (Nf1) increased HSF1 levels and triggered its activation in mouse embryonic fibroblasts. As a consequence, Nf1-/- cells acquired tolerance to proteotoxic stress. This activation of HSF1 depended on dysregulated MAPK signaling. HSF1, in turn, supported MAPK signaling. In mice, Hsf1 deficiency impeded NF1-associated carcinogenesis by attenuating oncogenic RAS/MAPK signaling. In cell lines from human malignant peripheral nerve sheath tumors (MPNSTs) driven by NF1 loss, HSF1 was overexpressed and activated, which was required for tumor cell viability. In surgical resections of human MPNSTs, HSF1 was overexpressed, translocated to the nucleus, and phosphorylated. These findings reveal a surprising biological consequence of NF1 deficiency: activation of HSF1 and ensuing addiction to this master regulator of the heat shock response. The loss of NF1 function engages an evolutionarily conserved cellular survival mechanism that ultimately impairs survival of the whole organism by facilitating carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/fisiología , Genes de Neurofibromatosis 1 , Proteínas de Neoplasias/fisiología , Neurofibromina 1/deficiencia , Factores de Transcripción/fisiología , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Transcripción del Choque Térmico , Calor , Humanos , Leupeptinas/toxicidad , Sistema de Señalización de MAP Quinasas , Macrólidos/toxicidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Neoplasias de la Vaina del Nervio/patología , Neurofibromina 1/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , ARN Interferente Pequeño/farmacología , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Witanólidos/toxicidad
19.
J Cell Physiol ; 227(8): 2982-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22105155

RESUMEN

Organisms frequently encounter a wide variety of proteotoxic stressors. The heat-shock response, an ancient cytoprotective mechanism, has evolved to augment organismal survival and longevity in the face of proteotoxic stress from without and within. These broadly recognized beneficial effects, ironically, contrast sharply with its emerging role as a culprit in the pathogenesis of cancers. Here, we present an overview of the normal biology of the heat-shock response and highlight its implications in oncogenic processes, including the proteotoxic stress phenotype of cancer; the function of this stress response in helping cancer survive and adapt to proteotoxic stress; and perturbation of proteome homeostasis in cancer as a potential therapeutic avenue.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico/genética , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Citoprotección , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción del Choque Térmico , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
J Biol Chem ; 285(46): 35528-36, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20833711

RESUMEN

It is conceivable that stimulating proteasome activity for rapid removal of misfolded and oxidized proteins is a promising strategy to prevent and alleviate aging-related diseases. Sulforaphane (SFN), an effective cancer preventive agent derived from cruciferous vegetables, has been shown to enhance proteasome activities in mammalian cells and to reduce the level of oxidized proteins and amyloid ß-induced cytotoxicity. Here, we report that SFN activates heat shock transcription factor 1-mediated heat shock response. Specifically, SFN-induced expression of heat shock protein 27 (Hsp27) underlies SFN-stimulated proteasome activity. SFN-induced proteasome activity was significantly enhanced in Hsp27-overexpressing cells but absent in Hsp27-silenced cells. The role of Hsp27 in regulating proteasome activity was further confirmed in isogenic REG cells, in which SFN-induced proteasome activation was only observed in cells stably overexpressing Hsp27, but not in the Hsp27-free parental cells. Finally, we demonstrated that phosphorylation of Hsp27 is irrelevant to SFN-induced proteasome activation. This study provides a novel mechanism underlying SFN-induced proteasome activity. This is the first report to show that heat shock response by SFN, in addition to the antioxidant response mediated by the Keap1-Nrf2 pathway, may contribute to cytoprotection.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Tiocianatos/farmacología , Animales , Anticarcinógenos/farmacología , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Proteínas de Choque Térmico HSP27/genética , Células HeLa , Factores de Transcripción del Choque Térmico , Calor , Humanos , Immunoblotting , Isotiocianatos , Leupeptinas/farmacología , Inhibidores de Proteasoma , Biosíntesis de Proteínas/efectos de los fármacos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfóxidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA