Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 275(Pt 2): 133595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960253

RESUMEN

Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.


Asunto(s)
Alginatos , Antibacterianos , Gelatina , Hidrogeles , Queratitis , Pseudomonas aeruginosa , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Hidrogeles/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Conejos , Pseudomonas aeruginosa/efectos de los fármacos , Gelatina/química , Alginatos/química , Humanos , Inyecciones , Terapia Fototérmica/métodos
2.
Front Vet Sci ; 11: 1418101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948672

RESUMEN

Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.

3.
BMC Genomics ; 25(1): 564, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840037

RESUMEN

Mesenchymal Stem Cells are ideal seed cells for tissue repair and cell therapy and have promising applications in regenerative medicine and tissue engineering. Using Platelet-Rich Plasma as an adjuvant to create and improve the microenvironment for Mesenchymal Stem Cells growth can enhance the biological properties of Mesenchymal Stem Cells and improve the efficacy of cell therapy. However, the mechanism by which Platelet-Rich Plasma improves the biological performance of Mesenchymal Stem Cells is still unknown. In this study, by examining the effects of Platelet-Rich Plasma on the biological performance of Mesenchymal Stem Cells, combined with multiomics analysis (Transcriptomics, Proteomics and Metabolomics) and related tests, we analyzed the specific pathways, related mechanisms and metabolic pathways of Platelet-Rich Plasma to improve the biological performance of Mesenchymal Stem Cells. In an in vitro cell culture system, the biological performance of Mesenchymal Stem Cells was significantly improved after replacing Foetal Bovine Serum with Platelet-Rich Plasma, and the genes (ESM1, PDGFB, CLEC7A, CCR1 and ITGA6 et al.) related to cell proliferation, adhesion, growth, migration and signal transduction were significantly upregulated. Platelet-Rich Plasma can enhance the secretion function of MSC exosomes, significantly upregulate many proteins related to tissue repair, immune regulation and anti-infection, and enhance the repair effect of exosomes on skin injury. After replacing Foetal Bovine Serum with Platelet-Rich Plasma, Mesenchymal Stem Cells underwent metabolic reprogramming, the metabolism of amino acids and fatty acids and various signaling pathways were changed, the anabolic pathways of various proteins were enhanced. These results provide a theoretical and technical reference for optimizing the Mesenchymal Stem Cells culture system, improving the biological characteristics and clinical application effects of Mesenchymal Stem Cells.


Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Proteómica , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Plasma Rico en Plaquetas/metabolismo , Humanos , Metabolómica , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Exosomas/metabolismo , Multiómica
4.
Front Vet Sci ; 10: 1266018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046571

RESUMEN

During the construction of tissue-engineered meniscus, the low porosity of extracellular matrix restricts the flow of nutrient solution and the migration and proliferation of cells, thus affecting the tissue remodeling after transplantation. In this study, the canine allogeneic meniscus was drilled first and then decellularized. The drilled tissue-engineered menisci (Drilled Allogeneic Acellular Meniscus + Bone Marrow Mesenchymal Stem Cells, BMSCs) were transplanted into the knee joints of model dogs. On the basis of ensuring the mechanical properties, the number of the porosity and the cells implanted in allogeneic acellular meniscus was significantly increased. The expression levels of glycosaminoglycans and type II collagen in the drilled tissue-engineered meniscus were also improved. It was determined that the animals in the experimental group recovered well-compared with those in the control group. The graft surface was covered with new cartilage, the retraction degree was small, and the tissue remodeling was good. The surface wear of the femoral condyle and tibial plateau cartilage was light. The results of this study showed that increasing the porosity of allogeneic meniscus by drilling could not only maintain the mechanical properties of the meniscus and increase the number of implanted cells but also promote cell proliferation and differentiation. After transplantation, the drilled tissue-engineered meniscus provided a good remodeling effect in vivo and played a positive role in repairing meniscal injury, protecting articular cartilage and restoring knee joint function.

5.
Stem Cell Res Ther ; 13(1): 370, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902971

RESUMEN

BACKGROUND: Islet transplantation is an excellent method for the treatment of type I diabetes mellitus. However, due to the limited number of donors, cumbersome isolation and purification procedures, and immune rejection, the clinical application is greatly limited. The development of a simple and efficient new method to obtain islet ß-cells is a key problem that urgently requires a solution for the treatment of type I diabetes mellitus. METHODS: In this study, Pbx1, Rfx3, Pdx1, Ngn3, Pax4 and MafA were used to form a six-gene combination to efficiently reprogram aMSCs (adipose mesenchymal stem cells) into ra-ßCs (reprogrammed aMSCs-derived islet ß-cells), and the characteristics and immunogenicity of ra-ßCs were detected. Feasibility of ra-ßCs transplantation for the treatment of diabetes mellitus in model dogs and clinical dogs was detected. RESULTS: In this study, aMSCs were efficiently reprogrammed into ra-ßCs using a six-gene combination. The ra-ßCs showed islet ß-cell characteristics. The immunogenicity of ra-ßCs was detected and remained low in vitro and increased after transplantation. The cotransplantation of ra-ßCs and aMSCs in the treatment of a model and clinical cases of canine diabetes mellitus achieved ideal therapeutic effects. CONCLUSIONS: The aMSCs were efficiently reprogrammed into ra-ßCs using a six-gene combination. The cotransplantation of ra-ßCs and aMSCs as a treatment for canine diabetes is feasible, which provides a theoretical basis and therapeutic method for the treatment of canine diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Mesenquimatosas , Tejido Adiposo , Animales , Diabetes Mellitus Tipo 1/terapia , Perros , Trasplante de Islotes Pancreáticos/métodos
6.
Cell Transplant ; 31: 9636897221081483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236160

RESUMEN

Adipose-derived mesenchymal stem cells (ADSCs) are ideal sources for the treatment of diabetes, and the differentiation of ADSCs into insulin-producing cells (IPCs) through transfection of exogenous regulatory genes in vitro has been studied in depth. The differentiation of ADSCs is strictly regulated by a variety of transcription factors such as Pdx1, Ngn3, Pax4, Nkx2.2, and Sox9. However, whether these genes can coordinately regulate the differentiation of ADSCs into IPCs is still unknown. In this study, five multigene coexpressing adenovirus vectors (pAdTrack-Pdx1-Ngn3-AdEasy, pAdTrack-Pdx1-Ngn3-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Pax4-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Nkx2.2-Sox9-AdEasy, and pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) were constructed, and then the stocks of the packaged adenoviruses were used to infect the canine ADSCs (cADSCs). Based on results of morphological observation, dithizone staining, sugar-stimulated insulin secretion test, cellular insulin immunofluorescence assays, and the detection of pancreatic ß-cell development-related genes in the induced cells, the best induction combination (pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) was identified after comparative screening. This study provides a theoretical reference and an experimental basis for further research on stem cell replacement therapy for diabetes.


Asunto(s)
Células Secretoras de Insulina , Células Madre Mesenquimatosas , Animales , Diferenciación Celular/genética , Perros , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/metabolismo , Secreción de Insulina
7.
Front Cell Infect Microbiol ; 11: 727665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604111

RESUMEN

Microsporum canis, a common pathogenic skin fungus, can cause dermatophytosis in humans and animals. Zinc is an important trace element and plays an important role in the growth and metabolism of fungi. Currently, the effects of zinc deficiency on growth, gene expression, and metabolic pathway have not been clarified in M. canis. Therefore, M. canis was cultured under zinc restriction, and RNA-Seq was conducted in this study. The growth of M. canis was severely inhibited, and many genes showed significant upregulation and downregulation in M. canis with zinc deficiency. Zinc deficiency could negatively affect the gene expression and biological metabolic pathway in M. canis. The zinc-responsiveness transcriptional activator (ZafA) gene was significantly upregulated and shared homology with Zap1. Thus, the ZafA gene might be the main transcription factor regulating M. canis zinc homeostasis. The ZafA gene knockout strain, ZafA-hph, was constructed via Agrobacterium tumefaciens-mediated transformation (ATMT) in M. canis for the first time to assess its function. In vitro growth ability, hair biodegradation ability, virulence test, and zinc absorption capacity in ZafA-hph and wild-type M. canis strains were compared. Results showed that the ZafA gene plays an important role in zinc absorption, expression of zinc transporter genes, and growth and pathogenicity in M. canis and can be used as a new drug target. Cutting off the zinc absorption pathway can be used as a way to prevent and control infection in M. canis.


Asunto(s)
Microsporum , Zinc , Animales , Humanos , Microsporum/genética , RNA-Seq , Virulencia
8.
Front Cell Dev Biol ; 9: 685494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262902

RESUMEN

The transdifferentiation of adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells (IPCs) is a potential resource for the treatment of diabetes. However, the changes of genes and metabolic pathways on the transdifferentiation of ADMSCs into IPCs are largely unknown. In this study, the transdifferentiation of canine ADMSCs into IPCs was completed using five types of procedures. Absolute Quantitative Transcriptome Sequencing Analysis was performed at different stages of the optimal procedure. A total of 60,151 transcripts were obtained. Differentially expressed genes (DEGs) were divided into five groups: IPC1 vs. ADSC (1169 upregulated genes and 1377 downregulated genes), IPC2 vs. IPC1 (1323 upregulated genes and 803 downregulated genes), IPC3 vs. IPC2 (722 upregulated genes and 680 downregulated genes), IPC4 vs. IPC3 (539 upregulated genes and 1561 downregulated genes), and Beta_cell vs. IPC4 (2816 upregulated genes and 4571 downregulated genes). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs revealed that many genes and signaling pathways that are essential for transdifferentiation. Hnf1B, Dll1, Pbx1, Rfx3, and Foxa1 were screened out, and the functions of five genes were verified further by overexpression and silence. Foxa1, Pbx1, and Rfx3 exhibited significant effects, can be used as specific key regulatory factors in the transdifferentiation of ADMSCs into IPCs. This study provides a foundation for future work to understand the mechanisms of the transdifferentiation of ADMSCs into IPCs and acquire IPCs with high maturity.

9.
BMC Genomics ; 22(1): 134, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632121

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells are a potential resource for the clinical therapy of certain diseases. Canine, as a companion animal, living in the same space with human, is an ideal new model for human diseases research. Because of the high prevalence of diabetes, alternative transplantation islets resource (i.e. insulin producing cells) for diabetes treatment will be in urgent need, which makes our research on the transdifferentiation of Bone marrow mesenchymal stem cells into insulin producing cells become more important. RESULT: In this study, we completed the transdifferentiation process and achieved the transcriptome profiling of five samples with two biological duplicates, namely, "BMSCs", "islets", "stage 1", "stage 2" and "stage 3", and the latter three samples were achieved on the second, fifth and eighth day of induction. A total of 11,530 differentially expressed transcripts were revealed in the profiling data. The enrichment analysis of differentially expressed genes revealed several signaling pathways that are essential for regulating proliferation and transdifferentiation, including focal adhesion, ECM-receptor interaction, tight junction, protein digestion and absorption, and the Rap1 signaling pathway. Meanwhile, the obtained protein-protein interaction network and functional identification indicating involvement of three genes, SSTR2, RPS6KA6, and VIP could act as a foundation for further research. CONCLUSION: In conclusion, to the best of our knowledge, this is the first survey of the transdifferentiation of canine BMSCs into insulin-producing cells according with the timeline using next-generation sequencing technology. The three key genes we pick out may regulate decisive genes during the development of transdifferentiation of insulin producing cells.


Asunto(s)
Insulinas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Transdiferenciación Celular/genética , Perros , Perfilación de la Expresión Génica , Humanos
10.
Biotech Histochem ; 96(2): 85-93, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32476489

RESUMEN

Endothelial progenitor cells (EPC) are located predominantly in the bone marrow. These cells are useful for treating human vascular diseases; they also are a possible target for restricting blood vessel growth for tumors. Little is known about canine EPC. We investigated a bone marrow EPC isolation method that combines the whole bone marrow culture method and the differential adherent speed method using stillborn canines. MTT proliferation, flow cytometry detection, Dil-ac-LDL uptake, FITC-UEA-1 binding and matrigel assays were used to identify and characterize EPC. We isolated two types of EPC: early EPC and late EPC. We found that isolated cells produced typical colony and cobblestone morphology, and were positive for CD31, CD34, CD133 and VEGFR-2. Significant differences were observed in the intensity of expression between early and late EPC, which suggests their different roles during angiogenesis and vasculogenesis. Both early and late EPC were positive for Dil-ac-LDL and FITC-UEA-1, and displayed tube formation when re-suspended in matrigel, both of which are important functional criteria for identifying EPC. Our method is a novel, effective and efficient way to produce enriched EPC.


Asunto(s)
Células Progenitoras Endoteliales , Animales , Médula Ósea , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Perros , Humanos , Células Madre
11.
Tissue Eng Part A ; 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32808578

RESUMEN

The Editors of Tissue Engineering: Part A retract the article entitled, "Cell Fate and Tissue Remodeling in Canine Urethral Repair Using a Bone Marrow Mesenchymal Stem Cell+Endothelial Progenitor Cell Amniotic Patch," by Wenxin Zhang, Xin Zhang, Yihua Zhang, Xinke Zhang, Tong Zou, Wen Zhao, Yangou Lv, Jinglu Wang, Pengxiu Dai, Hao Cui, Yi Zhang, Dengke Gao, Chenmei Ruan, and Xia Zhang (epub ahead of print September 21, 2020; DOI: http://doi.org/10.1089/ten.tea.2020.0129). After the online publication of the article, the authors have indicated that they "feel that we have not yet studied our work completely and some new great results are discovered. So after carefully thinking, we are going to rearrange this manuscript and try to give more precise model. [sic]" The authors have not explained what those expected results will be, so it remains unclear the direction their work is headed. The authors also indicated that they plan to submit an updated version of the paper to Tissue Engineering in the future. Upon submission the new manuscript will undergo rigorous peer review, and there is no guarantee of acceptance.

12.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756402

RESUMEN

Long noncoding RNAs (lncRNAs) have been extensively explored over the past decade, including mice and humans. However, their impact on the transdifferentiation of canine bone marrow mesenchymal stem cells (cBMSCs) into insulin-producing cells (IPCs) is largely unknown. In this study, we used a three-step induction procedure to induce cBMSCs into IPCs, and samples (two biological replicates each) were obtained after each step; the samples consisted of "BMSCs" (B), "stage 1" (S1), "stage 2" (S2), "stage 3" (S3), and "islets" (I). After sequencing, 15,091 lncRNAs were identified, and we screened 110, 41, 23, and 686 differentially expressed lncRNAs (padjusted < 0.05) in B vs. S1, S1 vs. S2, S2 vs. S3, and I vs. S3 pairwise comparisons, respectively. In lncRNA target prediction, there were 166,623 colocalized targets and 2,976,362 correlated targets. Gene Ontology (GO) analysis showed that binding represented the main molecular functions of both the cis- and trans-modes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the insulin signaling pathway, Rap1 signaling pathway, tight junctions, MAPK signaling pathway, and cell cycle were enriched for these relative genes. The expression of lncRNAs was verified using qRT-PCR. This study provides a lncRNA catalog for future research concerning the mechanism of the transdifferentiation of cBMSCs into IPCs.


Asunto(s)
Genoma/genética , Células Secretoras de Insulina/metabolismo , Insulinas/genética , ARN Largo no Codificante/genética , Animales , Diferenciación Celular/genética , Biología Computacional , Perros , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Humanos , Insulinas/metabolismo , Células Madre Mesenquimatosas , Ratones , Transducción de Señal/genética
13.
J Tissue Eng Regen Med ; 13(9): 1685-1701, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31267700

RESUMEN

Peripheral human nerves fail to regenerate across long tube implants (>2 cm), and tissue-engineered nerve grafts represent a promising treatment alternative. The present study aims to investigate the testosterone propionate (TP) repair effect of acellular nerve allograft (ANA) seeded with allogeneic bone marrow mesenchymal stem cells (BMSCs) on 3-cm canine sciatic nerve defect. ANA cellularized with allogeneic BMSCs was implanted to the defect, and TP was injected into the lateral crus of the defected leg. The normal group, the autograft group, the ANA + BMSCs group, the ANA group, and the nongrafted group were used as control. Five months postoperatively, dogs in the TP + ANA + BMSCs group were capable of load bearing, normal walking, and skipping, the autograft group and the ANA + BMSCs group demonstrated nearly the same despite a slight limp. The compound muscle action potentials (CMAPs) on the injured side to the uninjured site in the TP + ANA + BMSCs group were significantly higher than that in the ANA + BMSCs group [CMAPs ratio at A: F(3, 20) = 191.40; 0.02, CMAPs ratio at B: F(3, 20) = 43.27; 0.01]. Masson trichrome staining revealed that in the TP + ANA + BMSCs group, both the diameter ratio of the myelinated nerve and the thickness ratio of regenerated myelin sheath were significantly larger than that in the other groups [the diameter of myelinated nerve fibers: F(3, 56) = 13.45; P < .01, the thickness ratio of regenerated myelin sheath: F(3, 56) = 51.25; P < .01]. In conclusion, TP could significantly increase the repairing effects of the ANA + BMSCs group, and their combination was able to repair 3-cm canine sciatic nerve defect. It therefore represents a promising therapeutic approach.


Asunto(s)
Aloinjertos/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/fisiología , Propionato de Testosterona/farmacología , Animales , Separación Celular , Perros , Fenómenos Electrofisiológicos , Masculino , Músculos/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/ultraestructura , Ingeniería de Tejidos
14.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781401

RESUMEN

Trichophyton mentagrophytes is a common fungal pathogen that causes human and animal dermatophytosis. Previous studies have shown that zinc deficiency inhibits T. mentagrophytes growth, and the ZafA gene of T. mentagrophytes can code the functionally similar zinc finger transcriptional factor that can promote zinc ion absorption; however, the impact of ZafA on virulence and pathogenicity remains undetermined. To assess its gene function, the ZafA mutant, ZafA-hph, and the ZafA complemented strain, ZafA+bar, were constructed via Agrobacterium tumefaciens-mediated transformation. Polymerase chain reaction and Southern blot analyses were used to confirm the disruption. In vitro growth capacity and virulence analyses comparing ZafA-hph with wild-type T. mentagrophytes and ZafA+bar showed that ZafA-hph's growth performance, reproduction ability, and zinc ion absorption capacity were significantly lower than the wild-type T. mentagrophytes and ZafA+bar. ZafA-hph also showed weak hair biodegradation ability and animal pathogenicity. Thus, the significant decrease in T. mentagrophytes' growth ability and virulence was due to a lack of the zinc-responsive activity factor rather than the transformation process. This study confirmed that the T. mentagrophytes' zinc-responsive activity factor plays important roles in the pathogen's growth, reproduction, zinc ion absorption, and virulence. This factor is important and significant for effectively preventing and controlling T. mentagrophytes infections.


Asunto(s)
Genes Fúngicos , Trichophyton/crecimiento & desarrollo , Trichophyton/patogenicidad , Animales , Cabello , Humanos , Mutación/genética , Piel/microbiología , Piel/patología , Trichophyton/genética , Zinc/metabolismo
15.
J Vet Sci ; 19(1): 21-26, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28385010

RESUMEN

Coactosin-like protein 1 (Cotl1), a member of the actin-depolymerizing factor (ADF)/cofilin family, was first purified from a soluble fraction of Dictyostelium discoideum cells. Neuronal migration requires cytoskeletal remodeling and actin regulation. Although Cotl1 strongly binds to F-actin, the role of Cotl1 in neuronal migration remains undescribed. In this study, we revealed that Cotl1 overexpression impaired migrationof both early- and late-born neurons during mouse corticogenesis. Moreover, Cotl1 overexpression delayed, rather than blocked, neuronal migration in late-born neurons. Cotl1 expression disturbed the morphology of migrating neurons, lengthening the leading processes. This study is the first to investigate the function of Cotl1, and the results indicate that Cotl1 is involved in the regulation of neuronal migration and morphogenesis.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Expresión Génica , Proteínas de Microfilamentos/genética , Neuronas/fisiología , Animales , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Tissue Eng Part A ; 24(1-2): 47-56, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363256

RESUMEN

The treatment options for patients with a urethral defect are limited by the availability of autologous tissues. We hypothesized that transplantation of decellularized human amniotic scaffolds (dHAS) seeded with allogeneic bone marrow mesenchymal cells (BMSCs) and/or endothelial progenitor cells (EPCs) may serve as a promising repair strategy for long segment of circumferential urethral defect. To verify the hypothesis, with urinary catheterization, a 3-cm segment of whole urethra in 25 male mongrel dogs was excised and replaced by dHAS seeded with allogeneic BMSCs and/or EPCs. Postoperative observation and ascending urethrogram found that dHAS+BMSCs+EPCs and dHAS+EPCs groups demonstrated unhindered urination and capacious urethral caliber, which were similar to the normal group, while urethrostenosis was revealed in dHAS+BMSCs, dHAS, and sham-operated groups, with the shortest narrow section in dHAS+BMSCs group and the longest in sham-operated group. Urethral anatomy check and histological analyses showed that new urethral mucosa composed of stratified columnar epithelium completely covered on the inner surface of the graft site in dHAS+BMSCs+EPCs and dHAS+EPCs groups, but the middle epithelium was thin in dHAS+EPCs group, while incompletely covered in dHAS+BMSCs, dHAS, and sham-operated groups, and there were monolayer epithelial cells at the urethrostenosis in dHAS+BMSCs and dHAS groups. In addition, abundant new vessel and blood sinus showed at submucosa in dHAS+BMSCs+EPCs and dHAS+EPCs groups, instead of the scar tissue of collagen deposition and structural distortion at the urethrostenosis in dHAS+BMSCs, dHAS, and sham-operated groups. This study demonstrates that dHAS seeded with BMSCs+EPCs or EPCs can successfully repair a 3-cm circumferential urethral defect in model dogs, but the former works best. This technology may provide some references for human clinical trials on long segment of circumferential urethral defect repair.


Asunto(s)
Células de la Médula Ósea/citología , Células Progenitoras Endoteliales/citología , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Uretra/citología , Animales , Perros , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos
17.
BMC Genomics ; 18(1): 888, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157209

RESUMEN

BACKGROUND: Trichophyton mentagrophytes is an important zoonotic dermatophytic (ringworm) pathogen; causing severe skin infection in humans and other animals worldwide. Fortunately, commonly used fungal skin disease prevention and treatment measures are relatively simple. However, T. mentagrophytes is primarily studied at the epidemiology and drug efficacy research levels, yet current study has been unable to meet the needs of clinical medicine. Zinc is a crucial trace element for the growth and reproduction of fungi and other microorganisms. The metal ions coordinate within a variety of proteins to form zinc finger proteins, which perform many vital biological functions. Zinc transport regulatory networks have not been resolved in T. mentagrophytes. The T. mentagrophytes transcriptome will allow us to discover new genes, particularly those genes involved in zinc uptake. RESULT: We found T. mentagrophytes growth to be restricted by zinc deficiency; natural T. mentagrophytes growth requires zinc ions. T. Mentagrophytes must acquire zinc ions for growth and development. The transcriptome of T. mentagrophytes was sequenced by using Illumina HiSeq™ 2000 technology and the de novo assembly of the transcriptome was performed by using the Trinity method, and functional annotation was analyzed. We got 10,751 unigenes. The growth of T. mentagrophytes is severely inhibited and there were many genes showing significant up regulation and down regulation respectively in T. mentagrophytes when zinc deficiency. Zinc deficiency can affect the expression of multiple genes of T. mentagrophytes. The effect of the zinc deficiency could be recovered in the normal medium. And we finally found the zinc-responsive activating factor (ZafA) and speculated that 4 unigenes are zinc transporters. We knocked ZafA gene by ATMT transformation in T. mentagrophytes, the result showed that ZafA gene is very important for the growth and the generation of conidia in T. mentagrophytes. The expression of 4 zinc transporter genes is potentially regulated by the zinc-responsive activating factor. The data of this study is also sufficient to be used as a support to study T. mentagrophytes. CONCLUSION: We reported the first large transcriptome study carried out in T. mentagrophytes where we have compared physiological and transcriptional responses to zinc deficiency, and analyzed the expression of genes involved in zinc uptake. The study also produced high-resolution digital profiles of global genes expression relating to T. mentagrophytes growth.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas Fúngicas/genética , Transcriptoma , Trichophyton/genética , Zinc/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Mutación , Fenotipo , Análisis de Secuencia de ARN , Trichophyton/crecimiento & desarrollo , Trichophyton/metabolismo , Zinc/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...